[1]谭迎新①,赵玉鑫①,张硕①,等.2,6-二氨基-3,5-二硝基吡嗪-1-氧化物的热安全特性分析[J].爆破器材,2021,50(03):13-18.[doi:10.3969/j.issn.1001-8352.2021.03.003]
 TAN Yingxin,ZHAO Yuxin,ZHANG Shuo,et al.Thermal Safety Analysis of 2, 6-Diamino-3, 5-Dinitropyrazine-1-Oxide[J].EXPLOSIVE MATERIALS,2021,50(03):13-18.[doi:10.3969/j.issn.1001-8352.2021.03.003]
点击复制

2,6-二氨基-3,5-二硝基吡嗪-1-氧化物的热安全特性分析()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
50
期数:
2021年03
页码:
13-18
栏目:
基础理论
出版日期:
2021-05-25

文章信息/Info

Title:
Thermal Safety Analysis of 2, 6-Diamino-3, 5-Dinitropyrazine-1-Oxide
文章编号:
5545
作者:
谭迎新赵玉鑫张硕胡迪
①中北大学环境与安全工程学院(山西太原,030051)
②中国人民解放军32382部队(北京,100072)
Author(s):
TAN Yingxin ZHAO Yuxin ZHANG Shuo HU Di
① School of Environmental and Safety Engineering, North University of China (Shanxi Taiyuan, 030051)
② Unit 32382, PLA (Beijing, 100072)
关键词:
热分解热安全差示扫描量热仪表观活化能绝热诱导期
Keywords:
thermal decomposition thermal safety differential scanning calorimeter apparent activation energy time to maximum rate under adiabatic condition
分类号:
TJ55
DOI:
10.3969/j.issn.1001-8352.2021.03.003
文献标志码:
A
摘要:
采用差示扫描量热仪(DSC)对2,6-二氨基-3,5-二硝基吡嗪-1-氧化物(LLM-105)进行线性升温实验,分析其热分解特性。通过Kissinger和Friedman模型对DSC曲线进行动力学计算,并结合热平衡方程计算其绝热诱导期(TMRad)及自加速分解温度(θsad)。结果表明:LLM-105的初始分解温度、最高分解温度、分解完成温度均随着升温速率的增加而向高温方向移动,平均分解热为718.7 J/g。通过Kissinger模型计算得到的表观活化能为358.2 kJ/mol;而通过Friedman模型的计算曲线可知,LLM-105在不同反应阶段中具有不同反应。当绝热诱导期为2.0、4.0、8.0 h时,对应温度分别为296.8、290.7、284.7 ℃。当质量分别取5.0、15.0、25.0、50.0 kg时,自加速分解温度分别为267.0、265.0、262.0、259.0 ℃。随着包装质量的增加,分解放出的热量交换到周围环境中的难度就会越大,安全性也进一步降低。因此,在储存LLM-105时,必须控制一定的药品尺寸及良好的通风条件,以保证其储存安全。
Abstract:
Thermal decomposition characteristics of 2, 6-diamino-3, 5-dinitropyrazine-1-oxide (LLM-105) were studied by differential scanning calorimetry (DSC). Dynamics of the DSC curves were calculated by Kissinger and Friedman models, and the adiabatic induction period (TMRad) and self-accelerating decomposition temperature (θsad) were calculated by combining with the heat balance equation. Results show that the initial decomposition temperature, the maximum decomposition temperature and the decomposition completion temperature of LLM-105 all move towards the high temperature direction with the increase of heating rate, and the average decomposition temperature is 718.7 J/g. Apparent activation energy calculated by Kissinger model is 358.2 kJ/mol. While the calculated curve of Friedman model shows that LLM-05 has different reactions in different reaction stages. When the adiabatic induction periods are 2.0, 4.0 and 8.0 h, the corresponding temperatures are 296.8, 290.7 ℃ and 284.7 ℃, respectively. When the qualities are respectively 5.0,15.0, 25.0, 50.0 kg, the accelerating decomposition temperatures are 267.0, 265.0, 262.0, 259.0 ℃. With the increase of packaging quality, it is more difficult to exchange the heat released from decomposition into the surrounding environment, and the security is further reduced. Therefore, it is necessary to control the size of LLM-105 and maintain good ventilation, to ensure the safety in the storage of LLM-105.

参考文献/References:

[1]何志伟,王洋,刘锋,等.2,6-二氨基-3,5-二硝基吡啶-1-氧化物基PBX的热安全性研究[J].火炸药学报,2020,43(2):173-179.
HE Z W, WANG Y, LUI F, et al. Thermal safety of 2,6-diamino-3,5- dinitropyridine-1-oxide based PBX[J].Chinese Journal of Explosives & Propellants,2020,43(2): 173-179.
[2]马丛明,刘祖亮,许晓娟,等.吡啶类含能化合物的合成研究进展[J].有机化学,2014,34(7):1288-1299.MA C M, LIU Z L, XU X J, et al. Research progress on the synthesis of energetic pyridines[J].Chinese Journal of Organic Chemistry,2014,34(7):1288-1299.
[3]周心龙,刘祖亮,成健,等.ANPyO/LLM-105混晶及其造型粉性能和应用研究[J].爆破器材,2014,43(2):37-41.
ZHOU X L, LIU Z L, CHENG J, et al. Performance and application research of ANPyO/LLM-105 mischcrystal and its moulding powder[J].Explosive Materials,2014,43(2):37-41.
[4]周心龙,刘祖亮,朱顺官,等.ANPyO在不同温度下晶体感度和力学性能的分子动力学模拟[J].化工学报,2017,68(3):841-847.
ZHOU X L, LIU Z L, ZHU S G, et al.Molecular dynamics simulation on sensitivity and mechanical properties of ANPyO crystal at didderent temperature[J].Journal of Chemical Industry,2017,68(3):841-847.
[5]许亚北,谭迎新,曹卫国,等.RDX热分解特性及HMX对其热稳定性的影响[J].含能材料,2020,28(2):157-163.
XU Y B, TAN Y X, CAO W G, et al. Thermo-decomposition performance of RDX and the effect of HMX on its thermo-stability[J].Chinese Journal of Energytic Materials,2020,28(2):157-163.
[6]单军辉,周小清,李洪珍,等.诱导期法研究过饱和度对LLM-105成核的影响[J].含能材料,2020,28(9):841-847.
SHAN J H, ZHOU X Q, LI H Z, et al. Effect of super saturation on nucleation of LLM-105 based on induction period measurement method [J]. Chinese Journal of Energytic Materials,2020,28(9):841-847.
[7]常佩,王锡杰,胡建建,等.LLM-105合成新方法反应热分析[J].化学推进剂与高分子材料,2020,18(2):33-37.
CHANG P, WANG X J, HU J J, et al. Reaction heat analysis of new method for synthesis of LLM-105[J]. Chemical Propellants & Polymeric Materials,2020,18(2):33-37.
[8]PASQUINET E, NICOLAS P, ALEXANDRE F, et al. DAPO-LLM-105: improving the particle morphology and thermal stability[J].Propellants, Explosives, Pyrotechnics, 2019, 44(6):785-791.
[9]金韶华,李土娟,王雨乔,等.重结晶LLM-105的热危险性分析[J].安全与环境学报,2019,19(3):854-861.
JIN S H, LI T J, WANG Y Q, et al. Thermal hazard analysis for LLM-105 recrystallization[J]. Journal of Safety and Environment, 2019,19(3):854-861.
[10]王友兵,葛忠学,王伯周,等.细颗粒LLM-105的制备及其热性能[J].含能材料,2011,19(5):523-526.
WANG Y B, GE Z X, WANG B Z, et al. Preparation and thermal properties of fine LLM-105 with different crystal form[J]. Chinese Journal of Energetic Materials, 2011,19(5):523-526.
[11]王洋,何志伟,郭子如,等.ANPyO/NBR的热分解动力学及热安全性研究[J].中国安全科学学报,2019,29(5):62-66.
WANG Y, HE Z W, GUO Z R, et al. Thermal decomposition kinetics and thermal safety of ANPyO/NBR[J].China Safety Science Journal,2019,29(5):62-66.
[12]沈瑞强,袁俊明,罗凯,等.升温加载下含LLM-105的RDX基浇注炸药热点火细观模拟[J].火炸药学报,2018,41(2):137-142.
SHEN R Q, YUAN J M, LUO K, et, al. Microscopic simulation on thermal ignition of RDX-based cast explosives containing LLM-105 under heat loading[J]. Chinese Journal of Explosives & Propellants,2018,41(2):137-142.
[13]XU Y B, TAN Y X, CAO W G, et al. Thermal decomposition characteristics and thermal safety of dihydroxylammonium 5,5’bistetrazole-1,1’-diolate based on microcalorimetric experiment and decoupling method [J]. The Journal of Physical Chemistry C, 2020,124 (11):5987-5998.
[14]KISSINGER H E. Variation of peak temperature with heating rate in differential thermal analysis[J]. Journal of Research of the National Bureau of Standards, 1956, 57: 217-221.
[15]FRIEDMAN H L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry:application to a phenolic plastic[J]. Journal of Polymer Science Part C:Polymic Symposia, 1964, 6(1): 183-195.
[16]李陈. 基于含能材料自催化分解反应的热动力学和安全性研究[D].青岛:青岛科技大学,2020.
LI C. Study on thermal decomposition kinetics and safety based on autocatalytic reaction of energetic materials[D]. Qingdao:Qingdao University of Science and Technology,2020.
[17]YU S, TAN Y X. Research on thermal decomposition of 1,3,5-trinitro-1,3,5-triazinane based on differential scanning calorimetry[J]. Journal of Measurement Science and Instrumentation,2020,11(3):217-221.
于硕,谭迎新.基于差示扫描量热实验对1,3,5-三硝基-1,3,5-三氮杂环己烷热分解的测试研究[J].测试科学与仪器,2020,11(3):217-221.
[18]许亚北. 基于热分析动力学的RDX基混合炸药热安全性研究[D].太原:中北大学,2020.
XU Y B. Study on thermal safety of rdx based composite explosive baswd on thermal analysis kinetics[D]. Taiyuan:North University of China,2020.
[19]RODUIT B, FOLLY P,SARBACH A, et al. Estimation of time to maximum rate under adiabatic conditions (TMRad) using kinetics parameters derived from DSC:investigation of thermal behavior of 3-methy-4-nitrophenol[J]. Chemical Propellants & Polymeric Materials, 2011, 9(1): 84-96.
[20]NIU H, CHEN S S, SHU Q H, et al. Preparation, characterization and thermal risk evaluation of dihydroxylammonium 5, 5’-bistetrazole-1, 1’-diolate based polymer bonded explosive[J]. Journal of Hazardous Materials,2017, 338:208-217.
[21]IZATO YU-I, MIYAKE A. Kinetic analysis of the thermal decomposition of liquid ammonium nitrate based on thermal analysis and detailed reaction simulations[J].Jounal of Thermal Analysis and Calorimetry, 2018, 134(1):813-823.
[22]WANG Q S, ROGERS W J, MANNAN M S. Thermal risk assessment and rankings for reaction hazards in process safety[J].Journal of Thermal Analysis and Calorimetry, 2009, 98(1):225-233.
[23]王凯,王俊林,徐东,等.3-硝基-1,2,4-三唑-5-酮自催化分解反应特性与热安全性研究[J].兵工学报,2018,39(9):1727-1732.
WANG K, WANG J L, XU D, et al. Research on autocatalytic thermal decomposition properties and thermal safety of NTO[J]. Acta Armamentarii,2018,39(9):1727-1732.
[24]JIA M, GUO S, GAO S, et al. Thermal decomposition mechanism of diisopropyl azodicarboxylate and its thermal hazard assessment[J]. Thermochimica Acta,2020,688:178601.
[25]CAO C R, LIU S H, CHI J H, et al. Using thermal analysis and kinetics calculation method to assess the thermal stbility of azobisdimethylvaleronitrile[J]. Journal of Thermal Analysis and Calorimetry,2019,138(1):2853-2863.
[26]赵浪. 基于热分解动力学对CL-20基共晶炸药的热安全性评价研究[D].绵阳:西南科技大学,2019.
ZHAO L. Thermal safety evaluation of CL-20 based cocrystal explosives based on thermal decomposition kinetics[D]. Mianyang: Southwest University of Science and Technology,2019.

相似文献/References:

[1]王瑾,马志钢,熊强青.乳化炸药热分解特性研究[J].爆破器材,2009,38(04):6.
 WANG Jin,MA Zhigang,XIONG Qiangqing.Study on Thermal Decomposition Characters of Emulsion Explosives[J].EXPLOSIVE MATERIALS,2009,38(03):6.
[2]马平,李国仲.粉状乳化炸药热分解动力学研究[J].爆破器材,2009,38(03):1.
 MA Ping,LI Guozhong.Research on the Thermal Decomposition Kinetics of Powdery Emulsion Explosive[J].EXPLOSIVE MATERIALS,2009,38(03):1.
[3]黄寅生,崔晨晨,李锦涛,等.纳米CuO对钨系延期药热性能及燃烧性能的影响[J].爆破器材,2009,38(03):25.
 HUANG Yinsheng,CUI Chenchen,LI Jintao,et al.Effect of Nano-CuO on the Thermal Characteristics and Burning Characteristics of Tungsten Type Delay Composition[J].EXPLOSIVE MATERIALS,2009,38(03):25.
[4]陈永康①②,陈明华②,张力①,等.用快速筛选仪研究发射药的热分解[J].爆破器材,2014,43(03):48.[doi:10.3969/j.issn.1001-8352.2014.03.011]
 CHEN Yongkang,CHEN Minghua,ZHANG Li,et al.Study on the Thermal Decomposition of Propellant Using Rapid Screening Device[J].EXPLOSIVE MATERIALS,2014,43(03):48.[doi:10.3969/j.issn.1001-8352.2014.03.011]
[5]丁玉奎①,吴翼①,王海丹①,等.TNT对RDX热分解行为影响的研究[J].爆破器材,2014,43(05):21.[doi:10.3969/j.issn.1001-8352.2014.05.005]
 DING Yukui,WU Yi,WANG Haidan,et al.Effects of TNT on the Thermal Decomposition Performance of RDX[J].EXPLOSIVE MATERIALS,2014,43(03):21.[doi:10.3969/j.issn.1001-8352.2014.05.005]
[6]晋永,陆明.LLM-105的Cu(Ⅱ)和Co(Ⅲ)含能配合物:热分解特性及与HMX相容性[J].爆破器材,2015,44(01):1.[doi:10.3969/j.issn.1001-8352.2015.01.001]
 JIN Yong,LU Ming.Cu(Ⅱ) and Co(Ⅲ)Energetic Complexes of LLM-105: Thermal Decomposition Characteristics and Compatibility with HMX[J].EXPLOSIVE MATERIALS,2015,44(03):1.[doi:10.3969/j.issn.1001-8352.2015.01.001]
[7]郑亚峰,南海,席鹏,等.不同比例Al-RDX混合炸药的热分解活化能研究[J].爆破器材,2015,44(05):13.[doi:10.3969/j.issn.1001-8352.2015.05.004]
 ZHENG Yafeng,NAN Hai,XI Peng,et al.Research of Thermal Decomposition Activation Energy on Al-RDX Hybrid Explosives with Different Components Ratio[J].EXPLOSIVE MATERIALS,2015,44(03):13.[doi:10.3969/j.issn.1001-8352.2015.05.004]
[8]赵坤,刘祖亮.1-取代的4-硝基咪唑含能衍生物的合成、表征及热分解性能[J].爆破器材,2016,45(01):12.[doi:10.3969/j.issn.1001-8352.2016.01.003]
 ZHAO Kun,LIU Zuliang.Synthesis, Characterization and Decomposition of 1-Substitued 4-Nitroimidazole Energetic Derivatives[J].EXPLOSIVE MATERIALS,2016,45(03):12.[doi:10.3969/j.issn.1001-8352.2016.01.003]
[9]李家宽,马小霞,胡艳,等.KNO3/GO复合含能材料的制备与表征[J].爆破器材,2016,45(02):1.[doi:10.3969/j.issn.1001-8352.2016.02.001]
 LI Jiakuan,MA Xiaoxia,HU Yan,et al.Preparation and Characterization of KNO3/GO Composite Energetic Materials[J].EXPLOSIVE MATERIALS,2016,45(03):1.[doi:10.3969/j.issn.1001-8352.2016.02.001]
[10]刘利钊①,靳昕②,王鹏程①,等.N,N-二(三硝基乙基)硝胺(BTNNA)的合成工艺优化及热性能[J].爆破器材,2016,45(03):47.[doi:10.3969/j.issn.1001-8352.2016.03.010]
 LIU Lizhao,JIN Xin,WANG Pengcheng,et al.Synthesis Improvement and Thermal Properties of Bis(2,2,2-Trinitroethyl)-Nitramine (BTNNA)[J].EXPLOSIVE MATERIALS,2016,45(03):47.[doi:10.3969/j.issn.1001-8352.2016.03.010]

备注/Memo

备注/Memo:
收稿日期:2020-11-17
基金项目:山西省重点研发计划项目(201903D121028)
第一作者:谭迎新(1964-),女,教授,博导,主要从事兵器科学与安全技术的研究。E-mail:985378253@qq.com
更新日期/Last Update: 2021-05-25