[1]王甫①,李芳②,李艳春①,等.聚乙二醇6000合成工艺的热危险性[J].爆破器材,2021,50(03):7-12.[doi:doi:10.3969/j.issn.1001-8352.2021.03.002]
 WANG Fu,LI Fang,LI Yanchun,et al.Thermal Risk of Polyethylene Glycol 6000 Synthesis Process[J].EXPLOSIVE MATERIALS,2021,50(03):7-12.[doi:doi:10.3969/j.issn.1001-8352.2021.03.002]
点击复制

聚乙二醇6000合成工艺的热危险性()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
50
期数:
2021年03
页码:
7-12
栏目:
基础理论
出版日期:
2021-05-25

文章信息/Info

Title:
Thermal Risk of Polyethylene Glycol 6000 Synthesis Process
文章编号:
5542
作者:
王甫李芳李艳春钱华
①南京理工大学化工学院(江苏南京,210094)
②国家民用爆破器材质量监督检验中心(江苏南京,210094)
Author(s):
WANG Fu LI Fang LI Yanchun QIAN Hua
① School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② China National Quality Supervision Testing Center for Industrial Explosive Materials (Jiangsu Nanjing, 210094)
关键词:
聚乙二醇(PEG)反应量热仪(RCle)绝热加速量热仪(ARC)危害可控点
Keywords:
polyethylene glycol (PEG) reaction calorimeter (RC1e) adiabatic acceleration calorimeter (ARC) hazard controllable point
分类号:
TQ560;X932
DOI:
doi:10.3969/j.issn.1001-8352.2021.03.002
文献标志码:
A
摘要:
为研究聚乙二醇6000(PEG6000)合成工艺的热危险性,将PEG6000的合成过程分为8个阶段,采用反应量热仪(RC1e)和绝热加速量热仪(ARC)对8个阶段的放热情况及不同阶段PEG产品的稳定性进行测试,并将绝热升温ΔθadθD8相关联,提出了危害可控点的计算方法。RC1e结果表明:PEG127、PEG300、PEG806、PEG1500、PEG3350的失控严重度等级为4级;PEG4000的失控严重度等级为2级。ARC结果表明,θD8在311.32~318.39 ℃之间。危害可控点计算结果表明:PEG300的危害可控点数值最大,为69.43%;PEG4000危害可控点数值小于0。因此,在实际生产中,应格外重视PEG300这一合成阶段,可通过延长通气时间、减缓通气速率等措施避免体系温度升高过快而造成产物分解,降低反应过程的危险程度,实现企业的安全生产。
Abstract:
In order to study the thermal risk of polyethylene glycol 6000 (PEG6000) synthesis process, the synthesis process of PEG6000 was divided into eight stages. Reaction calorimeter (RC1e) and adiabatic acceleration calorimeter (ARC) were used to test the heat release and stability of PEG products in different stages. The adiabatic temperature rise △θad?was correlated with θD8, and the calculation method of hazard controllable point was proposed. RC1e results show that the out of control severity levels of PEG127, PEG 300, PEG 806, PEG 1500 and PEG 3350 are Grade 4, and that of PEG4000 is Grade 2. ARC results show that the θD8?of PEG products is 311.32-318.39 ℃. Results of hazard controllable point calculation show that the hazard controllable point of PEG300 is the largest (69.43%), and that of PEG4000 is less than 0. Therefore, special attention should be paid to the synthesis stage of PEG300 in actual production. Measures such as prolonging the ventilation time and slowing down the ventilation rate can avoid the decomposition of products caused by the rapid rise of system temperature, to reduce the risk of reaction process and to realize the safety production of enterprises.

参考文献/References:

[1]汪多仁. 聚乙二醇的应用与合成进展[J]. 化学工业与工程技术[J].2000, 21(5): 21-23.
WANG D R. Application and synthesis progress of polyethylene glycol[J]. Journal of Chemical Industry & Engineering, 2000, 21(5): 21-23.
[2]WANG X, MICHOEL A, VAN DEN MOOTER G. Study of the phase behavior of polyethylene glycol 6000-itraconazole solid dispersions using DSC[J]. International Journal of Pharmaceutics, 2004, 272(1/2): 181-187.
[3]KOU Y,WANG S Y,LUO J P,et al. Thermal analysis and heat capacity study of polyethylene glycol (PEG) phase change materials for thermal energy storage applications[J]. The Journal of Chemical Thermodynamics, 2019, 128: 259-274.
[4]谢富春, 朱长春, 张玉清. 聚乙二醇合成工艺[J]. 化学推进剂与高分子材料, 2005, 3(4): 6-9.
XIE F C, ZHU C C, ZHANG Y Q. Synthesis technology of polyethylene glycol[J]. Chemical Propellants & polymeric Materials, 2005, 3(4): 6-9.
[5]绪国梅, 郭振, 李晓光. 聚乙二醇6000的精制方法研究[J]. 化工时刊, 2019, 33(2): 18-19.
XU G M, GUO Z, LI X G. Study on the purification of polyethylene glycol 6000[J]. Chemical Industry Times, 2019, 33(2): 18-19.
[6]王国平, 李勤前, 方文军, 等. 聚乙二醇合成研究[J].浙江化工, 1995,26(3):17-19.
[7]张治国, 尹红. 环氧乙烷环氧丙烷开环聚合反应动力学研究[J]. 化学进展, 2007,19(4): 575-582.
ZHANG Z G, YIN H. Ring-opening polymerization kinetics of ethylene oxide and propylene oxide[J].Progress in Chemistry, 2007,19(4): 575-582.
[8]唐黎明. 聚合反应的典型影响因素分析[J]. 高分子通报, 2017(4): 72-76.
TANG L M. Analysis of the typical influence factors of polymerization[J]. Polymer Bulletin, 2017(4): 72-76.
[9]JANK B, HAYMERLE H, DOBLHOFF-DIER O. Zurich hazard analysis in biotechnology[J]. Nature Biotechnology, 1996, 14(7): 894-896.
[10]王犇, 马翔, 张淑娟,等. 过氧化氢危险性分析[J]. 无机盐工业, 2013, 45(3): 15-18.
WANG B, MA X, ZHANG S J, et al. Analysis on thermal risk of hydrogen peroxide [J]. Inorganic Chemicals Industry, 2013, 45(3):15-18.
[11]蔡永昶,吴文倩,陈利平.硝酸、硫酸对三硝基均苯三酚热分解特性的影响[J].爆破器材,2020,49(6):20-26.
CAI Y C, WU W Q, CHEN L P.Effect of nitric acid and sulfuric acid on thermal decomposition characteristics of trinitrophloroglucino[J].Explosive Materials,2020,49(6):20-26.
[12]TAN Y X, XU Y B, SHANG Y P, et al. Thermal decomposition behavior and thermal hazard of benzoyl peroxide unnder different environment conditions[J].Chemistry Select,2020,5(17):5049-5054.

备注/Memo

备注/Memo:
收稿日期:2020-11-11
第一作者:王甫(1994-),女,硕士研究生,主要从事反应过程危险性研究。E-mail:wangfu@njust.edu.cn
通信作者:钱华(1981-),男,研究员,主要从事反应工艺及物质的热稳定性研究。E-mail:qianhua@njust.edu.cn
更新日期/Last Update: 2021-05-25