[1]赵林林,郭效德,黄珊珊,等.硝基胍连续喷雾干燥数值模拟研究[J].爆破器材,2021,50(05):21-27.[doi:10.3969/j.issn.1001-8352.2021.05.004]
 ZHAO Linlin,GUO Xiaode,HUANG Shanshan,et al.Numerical Simulation of Continuous Spray Drying of Nitroguanidine[J].EXPLOSIVE MATERIALS,2021,50(05):21-27.[doi:10.3969/j.issn.1001-8352.2021.05.004]
点击复制

硝基胍连续喷雾干燥数值模拟研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
50
期数:
2021年05
页码:
21-27
栏目:
基础理论
出版日期:
2021-10-05

文章信息/Info

Title:
Numerical Simulation of Continuous Spray Drying of Nitroguanidine
文章编号:
5556
作者:
赵林林郭效德黄珊珊向贵锋
南京理工大学国家特种超细粉体工程技术研究中心(江苏南京,210094)
Author(s):
ZHAO Linlin GUO Xiaode HUANG Shanshan XIANG Guifeng
National Special Superfine Powder Engineering Research Center of China, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
数值模拟硝基胍喷雾干燥系统计算流体力学(CFD)
Keywords:
numerical simulation nitroguanidine spray drying system computational fluid dynamics (CFD)
分类号:
TQ560.7; O64
DOI:
10.3969/j.issn.1001-8352.2021.05.004
文献标志码:
A
摘要:
在对喷雾干燥塔内流动特点认识的基础上,采用较为成熟的计算流体力学(CFD)模型及算法,建立适用于硝基胍物料喷雾干燥的应用模型。利用Gambit软件对几何模型进行网格划分,导入Fluent中进行数值计算,预测塔内流场分布情况、液滴含水率及颗粒平均粒径等。通过测试样机干燥产品的含水率、产品粒度分布及场内温度分布等发现,预测结果与实验结果大致吻合,说明模拟结果有一定的准确度和可靠性。
Abstract:
Computational fluid dynamics (CFD) model and algorithm were used to establish suitable application model for spray drying of nitroguanidine based on the understanding of the flow characteristics of materials in spray drying tower. The geometric model was meshed by Software Gambit. It was introduced into Fluent for numerical calculation to predict flow field distribution, droplet moisture content and the average particle size in the tower. In the experiment, the moisture content, particle size distribution and temperature distribution in the field of dried products tested by the experimental prototype are used to verify the correctness of the mathematical model. The predicted results are similar to the experimental results, indicating the simulation results have certain accuracy and reliability.

参考文献/References:

[1]林海勇. 超细硝基胍的制备工艺及其应用研究[D]. 南京:南京理工大学, 2016.
LIN H Y. The preparation and application research of ultra-fine nitroguanidine[D]. Nanjing:Nanjing University of Science and Technology, 2016.
[2]YE B Y, AN C W, WANG J Y, et al. Formation and properties of HMX-based microspheres via spray drying[J]. RSC Advances, 2017, 7(56):35411-35416.
[3]安振华. 喷雾干燥技术的应用综述[J]. 中国粉体工业, 2020, 96(4):8-10.
AN Z H. Application of spray drying technology[J]. China Powder Industry, 2020, 96(4):8-10.
[4]SONG C G, LI X D, YANG Y, et al. Formation and characterization of core-shell CL-20/TNT composite prepared by spray-drying technique[J]. Defence Technology, 2021.DOI:10.1016/j.dt.2020.12.005.
[5]于才渊, 王宝和, 王喜忠. 喷雾干燥技术[M]. 北京:化学工业出版社, 2013:2-3.
YU C Y, WANG B H, WANG X Z. Spray drying system Technology[M]. Beijing:Chemical Industry Press, 2013:2-3.
[6]郑丹. 超细硝基胍的制备技术及其性能研究[D]. 南京:南京理工大学, 2015.
ZHENG D. The preparation and performance research of ultrafine nitroguanidine[D]. Nanjing:Nanjing University of Science and Technology, 2015.
[7]李云飞, 华泽钊, 刘宝林. 真空冷冻干燥中多孔层结构塌陷与玻璃化的关系[J]. 南京林业大学学报(自然科学版), 1997(增刊1):202-205.
LI Y F, HUA Z Z, LIU B L. Relationship between vitrifica and collapse of porous freeze dried layer [J].Journal of Nanjing Forestry University (Natural Science), 1997(Suppl.1):202-205.
[8]戚严文, 许京荆, 孙裕萍, 等. 催化剂喷雾干燥过程气固两相流数值模拟[J]. 工业控制计算机, 2018, 31(5):73-75.
QI Y W, XU J J, SUN Y P, et al. Numerical simulation of gas-particle flow in catalyst spray drying process[J]. Industrial Control Computer, 2018, 31(5):73-75.
[9]JASKULSKI M, WAWRZYNIAK P, ZBICINSKI, I. CFD simulations of droplet and particle agglomeration in an industrial countercurrent spray dryer[J]. Advanced Powder Technology, 2018, 29(7):1724-1733.
[10]LANGRISH TAG, HARRINGTON J, HUANG X, et al. Using CFD simulations to guide the development of a new spray dryer design[J]. Processes, 2020, 8(8):932.
[11]HERN-NDEZ B, FRASER B, JUAN L M D, et al. Computational fluid dynamics(CFD) modeling of swirling flows in industrial counter-current spray-drying towers under fouling conditions[J]. Industrial & Engineering Chemistry Research, 2018,57(35):11988-12002.
[12]磨正遵, 商飞飞, 潘中田, 等. 山楂果粉喷雾干燥参数工艺研究[J]. 食品研究与开发, 2018, 39(4):100-105.
MO Z Z, SHANG F F, PAN Z T, et al. Study on spray drying parameters of hawthorn fruit powder[J]. Food Research and Development, 2018, 39(4):100-105.
[13]秦娅, 吕庐峰, 侯栓弟, 等. 大型催化裂化催化剂喷雾干燥塔数值模拟及参数优化[J]. 石油炼制与化工, 2019, 50(4):59-63.
QIN Y, L-L F, HOU S D, et al. Numerical simulation and parameter optimization of large FCC catalyst spray dryer[J]. Petroleum Processing and Petrochemicals[J]. 2019, 50(4):59-63.
[14]胡月, 戴惠良. 基于ANSYS Fluent的气流喷雾干燥研究与仿真[J]. 机床与液压, 2018, 46(6):54-59.
HU Y, DAI H L. Study and simulation of air spray drying based on ANSYS Fluent[J]. Machine Tool & Hydraulics, 2018, 46(6):54-59.
[15]于勇. Fluent入门与进阶教程[M]. 北京:北京理工大学出版社, 2008:45-49.
YU Y. Fluent introduction and advanced course[M]. Beijng:Beijing Institute of Technology Press, 2008:45-49.
[16]金仁瀚. 气流中单液滴破碎过程及子液滴分布特性研究[D]. 南京:南京航空航天大学, 2016.
JIN R H. Investigations of deformation and breakup process of single and the distribution characteristics of the sub-droplet in airflow[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.

相似文献/References:

[1]郭涛,高振儒,范磊,等.不同位置条件下减震沟减震效应的数值模拟[J].爆破器材,2010,39(02):7.
 GUO Tao,GAO Zhenru,FAN Lei,et al.Numerical Simulation of Damping Effect of Damping Ditch with Different Location[J].EXPLOSIVE MATERIALS,2010,39(05):7.
[2]朱铭颉,顾文彬,唐勇,等.炸高对侵彻效应影响试验和数值模拟研究[J].爆破器材,2010,39(02):31.
 ZHU Mingjie,GU Wenbin,TANG Yong,et al.The Experimental & Numerical Simulation of the Standoff Effect to Penetra[J].EXPLOSIVE MATERIALS,2010,39(05):31.
[3]张世林,周春桂,王志军,等.一种新型水射流切割器成型的仿真研究[J].爆破器材,2011,40(02):5.
 ZHANG Shilin,ZHOU Chungui,WANG Zhijun.Simulation and Research on Water Jet Formation of a New Type Molding Cutter[J].EXPLOSIVE MATERIALS,2011,40(05):5.
[4]姚志华,王志军,付璐,等.半正方形罩线型切割器的数值模拟研究[J].爆破器材,2011,40(02):11.
 YAO Zhihua,WANG Zhijun,FU Lu,et al.Numerical Simulation of Linear Cutter with Semi-square Liner[J].EXPLOSIVE MATERIALS,2011,40(05):11.
[5]刘好全,何洋扬,张洋溢.爆轰波斜入射金属材料的模拟计算[J].爆破器材,2009,38(06):1.
 LIU Haoquan,HE Yangyang,ZHANG Yangyi.Simulation on the Oblique Reflection of Detonation Waves at the ExplosiveMetal Interface[J].EXPLOSIVE MATERIALS,2009,38(05):1.
[6]安二峰,杨军,陈鹏万.高锰钢整铸辙叉爆炸硬化实践与研究[J].爆破器材,2009,38(02):25.
 AN Erfeng,YANG Jun,CHEN Pengwan.Study on Explosive Hardening of Hadfield Steel Rail Frogs[J].EXPLOSIVE MATERIALS,2009,38(05):25.
[7]徐全军,白帆,伍睿星.占据式聚能装药射流形成的数值模拟及试验研究[J].爆破器材,2011,40(03):11.
 XU Quanjun,BAI Fan,WU Ruixing.Numerical Simulation of Jet Formation by Shaped Charge with the Inhibitor and Experimental Investigation[J].EXPLOSIVE MATERIALS,2011,40(05):11.
[8]成凤生,宋浦,顾晓辉,等.TNT装药爆炸波在刚性平面上方传播反射的数值研究[J].爆破器材,2011,40(04):1.
 CHENG Fengsheng,SONG Pu,GU Xiaohui,et al.Numerical Investigation into the Propagation and Reflection of TNT Blast Wave above Rigid Plane[J].EXPLOSIVE MATERIALS,2011,40(05):1.
[9]史长根,尤峻,周祥,等.高压容器试验仓安全评估计算方法研究[J].爆破器材,2011,40(04):32.
 SHI Changgen,YOU Jun,ZHOU Xiang,et al.Study on Computational Method of Safe Evaluation for Test House of High Pressure Gases Vessel Explosion Hazards[J].EXPLOSIVE MATERIALS,2011,40(05):32.
[10]贾伟①②,吴国东①,王志军①,等.药型罩结构对环形爆炸成型弹丸形成的影响[J].爆破器材,2011,40(06):8.
 JIA Wei,WU Guodong,WANG Zhijun,et al.Influence of Liner Structure on Forming Process of Annular EFP[J].EXPLOSIVE MATERIALS,2011,40(05):8.

备注/Memo

备注/Memo:
收稿日期:2020-12-21
基金项目:基础科研项目火炸药专项
第一作者:赵林林(1996-),女,硕士研究生,研究方向为喷雾干燥数值模拟。E-mail:820426790@qq.com
通信作者:郭效德(1968-),男,博导,研究方向为纳米材料制备、修饰及改性技术。E-mail:guoxiaodenj@163.com
更新日期/Last Update: 2021-10-04