[1]张邹邹,何昌辉,张衡,等.NC体系发射药烤燃点火的响应特性[J].爆破器材,2021,50(01):38-43.[doi:10.3969/j.issn.1001-8352.2021.01.007]
 ZHANG Zouzou,HE Changhui,ZHANG Heng,et al.Ignition Response Characteristics of NC Propellants under Cook-off Test[J].EXPLOSIVE MATERIALS,2021,50(01):38-43.[doi:10.3969/j.issn.1001-8352.2021.01.007]
点击复制

NC体系发射药烤燃点火的响应特性()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
50
期数:
2021年01
页码:
38-43
栏目:
爆炸材料
出版日期:
2021-01-22

文章信息/Info

Title:
Ignition Response Characteristics of NC Propellants under Cook-off Test
文章编号:
5449
作者:
张邹邹何昌辉张衡赵宝明
西安近代化学研究所(陕西西安,710065)
Author(s):
ZHANG Zouzou HE Changhui ZHANG Heng ZHAO Baoming
Xi'an Modern Chemistry Research Institute (Shaanxi Xi'an, 710065)
关键词:
发射药烤燃响应热分解燃烧性能
Keywords:
gun propellant cook-off response thermal decomposition combustion performance
分类号:
TQ562+.21
DOI:
10.3969/j.issn.1001-8352.2021.01.007
文献标志码:
A
摘要:
选用制式的硝化棉(NC)体系发射药进行了烤燃试验,研究了NC体系发射药的配方组成对烤燃作用下的自点火温度和燃烧性能的影响。结果表明,NC体系发射药的配方组分对烤燃响应的自点火温度和燃烧性能影响明显,随着烤燃温度上升,NC体系发射药烤燃响应时经历了热分解—点火燃烧—冲破约束强度造成剧烈响应的过程。单基药中NC的自热反应和硝胺发射药中RDX的气相燃爆反应使得发射药迅速完成热分解到燃烧反应的转变,压力增长速度较快;单基药的自点火温度约为157.5 ℃,增加较低温度开始分解的NG和增塑剂TEGDN提前了发射药的自点火温度;发射药烤燃点火后,压力增长速率与发射药配方组成和弧厚有明显关系,与烤燃响应类型和冲击压力规律相符;增加弧厚对发射药烤燃作用下的热分解无影响,降低了点火后压力的上升速率,有利于降低发射药烤燃响应剧烈程度。
Abstract:
The cook-off test of NC propellant system was carried out. Influence of the composition of the NC propellant system on the self-ignition temperature and combustion performance under the cook-off test was studied. Results show that the components of the NC system propellant has obvious influence on the self-ignition temperature and combustion performance of cook-off response. With the rise of cook off temperature, the NC propellant system experienced a process of thermal decomposition, ignition and combustion, and breaking through the constraint strength. Self-heating reaction of NC in single-base propellant and gas phase combustion reaction of RDX in nitramine propellant make the propellant complete the transition from thermal decomposition of combustion reaction. Pressure growth speed is faster, and the self-ignition temperature of single-based propellant is 157.5 ℃. Addition of NG and TEGDN plasticizer which start to decompose at lower temperature can advance the self-ignition temperature of the propellant. Pressure growth rate of propellant after ignition is obviously related to the composition and arc thickness, and it is consistent with the type of ignition response and the law of shock wave pressure.Increasing the arc thickness has no effect on the thermal decomposition of propellant, but it reduces the ignition pressure rise rate to reduce the propellant combustion intensity response.

参考文献/References:

[1]Hazard assessment tests for non-nuclear munition:MIL—STD—2105D[S]. Washington DC, USA:NPFC, 2011.
[2]王伯羲,冯增国,杨荣杰. 火药燃烧理论[M]. 北京:北京理工大学出版社,1997.
[3]冯长根.热爆炸理论[M]. 北京:科学出版社, 1988.
[4]胡海波,郭应文,傅华,等. 炸药事故反应烈度转化的主控机制[J]. 含能材料,2016,24(7):622-624.
[5]NSWCDD L J R . Minor caliber insensitive munitions reaction mitigation implementation[C]//2007 Insensitive Munitions & Energetic Materials Technology Symposium. Miami, FL, USA, 2007.
[6]ROOS B D, SAMUELS P, LEE K, et al. Experimental deviations from conventional critical temperature models for non-ideal explosive formulations[C]//2009 Insensitive Munitions & Energetic Materials Technology Symposium. Tucson, AZ,USA,2009.
[7]郭耸,王青松,孙金华,等. 双基发射药和混合硝酸酯发射药的热分解特性[J]. 火炸药学报,2009,32(2):75-79.
GUO S,WANG Q S,SUN J H, et al. Thermal decomposition characteristics of double-base propellant and multi-nitrate ester propellant [J]. Chinese Journal of Explosives & Propellants,2009,32(2):75-79.
[8]崔冰兵. 硝化三乙二醇的热分解及催化机理研究[D].南京:南京理工大学,2010.
[9]陈晨,路桂娥,江劲勇,等. 双芳3发射药热安全性的实验研究[J].火炸药学报,2014,37(3):70-73.
CHEN C,LU G E,JIANG J Y, et al. Experimental reasearch on the thermal safety of SF-3 gun propellant [J]. Chinese Journal of Explosives & Propellants,2014,37(3):70-73.
[10]赵瑛,刘毅,杨丽侠,等. ETPE发射药与RGD7硝胺发射药燃烧性能及热行为的对比研究[J]. 含能材料,2012,20(2):188-192.
ZHAO Y,LIU Y,YANG L X, et al. Combustion properties and thermal behavior of ETPE gun propellant and RGD7 nitramine gun propellant[J]. Chinese Journal of Energetic Materials,2012,20(2):188-192.
[11]张人何,路桂娥,刘昆仑,等. 湿度对单基发射药热分解行为的影响[J]. 含能材料,2008,16(1):12-15.
ZHANG R H, LU G E, LIU K L, et al. Influence of humidity on thermal decomposition behavior of single-base propellant [J]. Chinese Journal of Energetic Materials, 2008,16(1):12-15.
[12]刘子如. 含能材料热分析[M]. 北京:国防工业出版社,2008.LIU Z R.Thermal analyses for energetic materials[M].Beijing: National Defense Industry Press, 2008.
[13]张冬梅,郑朝民,衡淑云,等.含RDX高能硝胺发射药的热分解动力学补偿效应[J].火炸药学报,2014,37(3):82-85.
ZHANG D M, ZHENG C M, HENG S Y, et al. Thermal decomposition kinetic compensation effect of high energy nitroamine gun propellants containing RDX [J]. Chinese Journal of Explosives & Propellants,2014,37(3):82-85.
[14]张亚坤,智小琦,李强,等.RDX基炸药热起爆临界温度的测试及数值计算[J].火炸药学报,2014,37(1):39-43.
ZHANG Y K, ZHI X Q, LI Q, et al. Determination and numerical calculation of thermal initiation critical temperature of RDX-based explosive [J]. Chinese Journal of Explosives & Propellants,2014,37(1):39-43.
[15]杨丽侠,张邹邹 刘来东. 发射装药热刺激下的易损性响应试验研究[J]. 火炸药学报,2008,31(3):71-74.
YANG L X,ZHANG Z Z,LIU L D. Experimental study on vulnerability response of propelling charge to thermal stimuli [J]. Chinese Journal of Explosives & Propellants,2008,31(3):71-74.
[16]韩博,张晓志,邢浴仁.一种新型发射装药低易损性能的测试研究[J].火炸药学报, 2008,31(1):53-55,59.
HAN B, ZHANG X Z, XING Y R. Study on LOVA performances test of a new propelling charge[J]. Chinese Journal of Explosives & Propellants, 2008,31(1):53-55,59.

相似文献/References:

[1]黄亚峰,王晓峰,王红星,等.火炸药双螺杆挤出工艺的研究现状与发展[J].爆破器材,2013,42(04):41.[doi:10.3969/j.issn.1001-8352.2013.04.010]
 HUANG Yafeng,WANG Xiaofeng,WANG Hongxing,et al.Research Status and Development of the Twin Screw Extrusion Technology on the propellants and explosives[J].EXPLOSIVE MATERIALS,2013,42(01):41.[doi:10.3969/j.issn.1001-8352.2013.04.010]
[2]陈永康①②,陈明华②,张力①,等.用快速筛选仪研究发射药的热分解[J].爆破器材,2014,43(03):48.[doi:10.3969/j.issn.1001-8352.2014.03.011]
 CHEN Yongkang,CHEN Minghua,ZHANG Li,et al.Study on the Thermal Decomposition of Propellant Using Rapid Screening Device[J].EXPLOSIVE MATERIALS,2014,43(01):48.[doi:10.3969/j.issn.1001-8352.2014.03.011]
[3]刘强,张玉成,张江波,等.底喷式等离子体发生器的输出特性研究[J].爆破器材,2015,44(04):11.[doi:10.3969/j.issn.1001-8352.2015.04.003]
 LIU Qiang,ZHANG Yucheng,ZHANG Jiangbo,et al.Output Characteristics of the Bottomjet Plasma Generator[J].EXPLOSIVE MATERIALS,2015,44(01):11.[doi:10.3969/j.issn.1001-8352.2015.04.003]
[4]崔晓萍①,马永忠①,杨建②.某型枪射催泪弹的可靠性研究[J].爆破器材,2018,47(02):48.[doi:10.3969/j.issn.1001-8352.2018.02.010]
 CUI Xiaoping,MA Yongzhong,YANG Jian.Study on the Reliability of a Gun Firing Tear Gas Grenade[J].EXPLOSIVE MATERIALS,2018,47(01):48.[doi:10.3969/j.issn.1001-8352.2018.02.010]
[5]陈言坤,马士洲,汪海涛,等.基于燃气生成速率比的发射药破碎程度定量表征方法[J].爆破器材,2019,48(02):15.[doi:10.3969/j.issn.1001-8352.2019.02.003]
 CHEN Yankun,MA Shizhou,WANG Haitao,et al.Quantitative Characterization Method for Fragmentation Degree of Propellant Based on Ratio of Gas Generation Rates[J].EXPLOSIVE MATERIALS,2019,48(01):15.[doi:10.3969/j.issn.1001-8352.2019.02.003]
[6]解德富①,黄振亚①,张成①,等.高燃速功能材料对高能发射药性能的影响[J].爆破器材,2020,49(06):27.[doi:10.3969/j.issn.1001-8352.2020.06.005]
 XIE Defu,HUANG Zhenya,ZHANG Cheng,et al.Influence of High Burning Rate Functional Materials on Properties of High Energy Gun Propellant[J].EXPLOSIVE MATERIALS,2020,49(01):27.[doi:10.3969/j.issn.1001-8352.2020.06.005]
[7]胡敏恩①,李芳②,宋立骞①,等.典型湿度条件下某双基发射药的安全储存寿命预估[J].爆破器材,2021,50(03):55.[doi:10.3969/j.issn.1001-8352.2021.03.011]
 HU Minen,LI Fang,SONG Liqian,et al.Safety Storage Life Estimation of a Double Base Propellant under Typical Humidity[J].EXPLOSIVE MATERIALS,2021,50(01):55.[doi:10.3969/j.issn.1001-8352.2021.03.011]
[8]韩冰,魏伦,于慧芳,等.CD-3发射装药低易损性能试验研究[J].爆破器材,2022,51(02):26.[doi:10.3969/j.issn.1001-8352.2022.02.004]
 HAN Bing,WEI Lun,YU Huifang,et al.Experimental Study on Low Vulnerability of CD-3 Propellant Charge[J].EXPLOSIVE MATERIALS,2022,51(01):26.[doi:10.3969/j.issn.1001-8352.2022.02.004]
[9]马健行①,王彦君②,陈华东②,等.典型换能元与点火药剂匹配试验研究[J].爆破器材,2022,51(05):31.[doi:10.3969/j.issn.1001-8352.2022.05.006]
 MA Jianxing,WANG Yanjun,CHEN Huadong,et al.Matching Experimental Study on Typical Energy Exchange Elements and Ignition Agents[J].EXPLOSIVE MATERIALS,2022,51(01):31.[doi:10.3969/j.issn.1001-8352.2022.05.006]

备注/Memo

备注/Memo:
收稿日期:2020-01-02
第一作者:张邹邹(1979-),女,副研究员,研究方向为发射药性能表征与评估技术。E-mail:393460647@qq.com
更新日期/Last Update: 2021-01-21