[1]王闯,李亚宁,李建,等.装药量对温压炸药爆炸毁伤威力的影响[J].爆破器材,2023,52(04):37-43.[doi:10.3969/j.issn.1001-8352.2023.04.006]
 WANG Chuang,LI Yaning,LI Jian,et al.The Influence of Charge Quantity on the Explosion Damage Power of Thermobaric Explosives[J].EXPLOSIVE MATERIALS,2023,52(04):37-43.[doi:10.3969/j.issn.1001-8352.2023.04.006]
点击复制

装药量对温压炸药爆炸毁伤威力的影响()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
52
期数:
2023年04
页码:
37-43
栏目:
爆炸材料
出版日期:
2023-07-19

文章信息/Info

Title:
The Influence of Charge Quantity on the Explosion Damage Power of Thermobaric Explosives
文章编号:
5788
作者:
王闯李亚宁李建王伯良
南京理工大学化学与化工学院(江苏南京,210094)
Author(s):
WANG Chuang LI Yaning LI Jian WANG Boliang
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
温压炸药冲击波超压冲击波冲量爆炸火球尺寸爆炸火球温度
Keywords:
thermobaric explosives overpressure of shock wave impulse of shock wave size of explosion fireball temperature of explosion fireball
分类号:
TJ55;O381
DOI:
10.3969/j.issn.1001-8352.2023.04.006
文献标志码:
A
摘要:
为了获得温压炸药装药量对近地空中爆炸的能量输出结构的影响规律,开展了质量为0.5、1.0、2.0 kg的温压炸药近地空爆试验,并使用压力传感器、高速摄像机、红外热成像仪记录了爆炸冲击波和爆炸火球参数。使用TNT超压经验公式对0.5、1.0、2.0 kg装药的空中入射冲击波、地面冲击波的超压峰值进行拟合,建立了冲击波超压峰值衰减规律方程。根据高速摄像机和红外热成像仪的测试结果,建立了基于装药量的爆炸火球直径、火球持续时间和火球温度最高时刻热通量的拟合方程。对比0.5、1.0、2.0 kg装药的爆炸火球图像和温度曲线可以看出:随着装药量的增加,爆炸火球的最高温度、火球尺寸(直径×高度)以及持续时间均有一定的增加,高温区域在火球面积中的占比也有所提升。
Abstract:
In order to obtain the influence law of charge amount on the energy output structure of thermobaric explosives in the near ground air explosions, the near-ground air explosion test of the thermobaric explosive with a mass of 0.5, 1.0, and 2.0 kg was carried out. Parameters of explosion shock wave and fireball were recorded using pressure sensors, high-speed cameras, and infrared thermal imagers. The TNT overpressure empirical formula was used to fit the peak overpressure of the shock wave in the air or on the ground after the explosion of 0.5, 1.0, and 2.0 kg charges, and the equation for the attenuation law of the peak overpressure of the shock wave was established. According to the test and analysis results of the high-speed camera and the infrared thermal imager, fitting equations for the diameter, duration, and heat flux at the highest temperature moment of the explosion fireball based on the charge amount were established. Comparing the images and temperature curves of 0.5, 1.0, and 2.0 kg explosion fireballs, it can be seen that, as the charge amount increases, the highest temperature, the size (diameter × height), and the duration of the fireball have all increased to a certain extent, and the proportion of high-temperature areas in the fireball area has also increased.

参考文献/References:

[1]TURKER L. Thermobaric and enhanced blast explosives (TBX and EBX)[J]. Defence Technology, 2016, 12(6): 423-445.
[2]王晓峰, 冯晓军. 温压炸药设计原则探讨[J]. 含能材料, 2016, 24(5): 418-420.
[3]李世民, 李晓军, 郭彦朋.温压炸药自由场爆炸空气冲击波的数值模拟研究[J]. 爆破, 2011, 28(3): 8-12.
LI S M, LI X J, GUO Y P. Numerical simulation study on airblast of thermobaric explosive explosion in free air[J]. Blasting, 2011, 28(3): 8-12.
[4]耿振刚, 李秀地, 苗朝阳, 等. 温压炸药爆炸冲击波在坑道内的传播规律研究[J]. 振动与冲击, 2017, 36(5): 23-29.
GENG Z G, LI X D, MIAO C Y, et al. Propagation of blast wave of thermobaric explosive inside a tunnel [J]. Journal of Vibration and Shock, 2017, 36(5): 23-29.
[5]XU W L, WANG C, YUAN J M, et al. Investigation on energy output structure of explosives near-ground explosion [J]. Defence Technology, 2020, 16(2): 290-298.
[6]AHMED K M, MOSTAFA H E, SHERIF E, Nanoscopic fuel-rich thermobaric formulations: chemical composition optimization and sustained secondary combustion shock wave modulation[J]. Journal of Hazardous Materials, 2016, 301: 492-503.
[7]冯晓军, 王晓峰, 李媛媛, 等. 铝粉粒度和爆炸环境对含铝炸药爆炸能量的影响[J]. 火炸药学报, 2013, 36(6): 24-27.
FENG X J, WANG X F, LI Y Y, et al. Effect of aluminum particle size and explosion atmosphere on the energy of explosion of aluminized explosive [J]. Chinese Journal of Explosives & Propellants, 2013, 36(6): 24-27.
[8]王建灵, 郭炜, 冯晓军. TNT、PBX和Hexel空中爆炸冲击波参数的实验研究[J]. 火炸药学报, 2008, 31(6): 42-44, 46.
WANG J L, GUO W, FENG X J. Experimental research on the air explosion shock wave parameters of TNT, PBX and Hexel [J]. Chinese Journal of Explosives & Propellants, 2008, 31(6): 42-44, 46.
[9]赵新颖, 王伯良, 李席, 等. 温压炸药爆炸冲击波在爆炸堡内的传播规律[J]. 含能材料, 2016, 24(3): 231-237.
ZHAO X Y, WANG B L, LI X, et al. Shockwave propagation characteristics of thermobaric explosive in an explosion chamber[J]. Chinese Journal of Energetic Materials, 2016, 24(3): 231-237.
[10]赵新颖, 王伯良, 李席. 温压炸药在野外近地空爆中的冲击波规律[J]. 爆炸与冲击, 2016, 36(1): 38-42.
ZHAO X Y, WANG B L, LI X. Shockwave characteristics of thermobaric explosive in free-field explosion [J]. Explosion and Shock Waves, 2016, 36(1): 38-42.
[11]仲倩. 燃料空气炸药爆炸参数测量及毁伤效应评估[D]. 南京: 南京理工大学, 2011.
ZHONG Q. Research on measurement of explosion parameters and evaluation of damage effect of fuel air explosive[D]. Nanjing: Nanjing University of Science and Technology, 2011.
[12]宋先钊, 江军, 安高军, 等. 新型云爆剂液相组分配方设计及毁伤威力[J]. 含能材料, 2021, 29(5): 434-443.
SONG X Z, JIANG J, AN G J, et al. Design of new liquid component of fuel air explosive and its damage power[J]. Chinese Journal of Energetic Materials, 2021, 29(5): 434-443.
[13]肖伟. 助燃剂对含铝炸药爆炸特性的影响及其释能规律研究[D]. 南京: 南京理工大学, 2021.
XIAO W. Study on influence of combustion promoter on explosion characteristics of aluminized explosive and its energy release law [D]. Nanjing: Nanjing University of Science and Technology, 2021.

相似文献/References:

[1]陈昊,陶钢.温压弹在有限空间内爆炸的超压测试和分析[J].爆破器材,2009,38(05):4.
 CHEN Hao,TAO Gang.The Test and Analysis on Overpressure Generated by Thermo-baric Grenade Explosion in Limited Space[J].EXPLOSIVE MATERIALS,2009,38(04):4.
[2]李鸿宾,王建灵,张为鹏,等.铝粉比表面积与质量分数对浆状温压炸药爆炸冲击波影响的实验研究[J].爆破器材,2013,42(01):5.[doi:10.3969/j.issn.1001-8352.2013.01.002]
 LI Hongbin,WANG Jianling,ZHANG Weipeng,et al.Experiment Study on the Effect of Specific Surface Area and Content of Aluminum Powder on Shock Wave Output of Slurry TBE[J].EXPLOSIVE MATERIALS,2013,42(04):5.[doi:10.3969/j.issn.1001-8352.2013.01.002]
[3]徐森①,张兴明①,潘峰①,等.工业炸药能量测试方法的分析[J].爆破器材,2013,42(01):18.[doi:10.3969/j.issn.1001-8352.2013.01.005]
 XU Sen,ZHANG Xingming,PAN Feng,et al.Analysis on the Energy Testing Methods of Industrial Explosives[J].EXPLOSIVE MATERIALS,2013,42(04):18.[doi:10.3969/j.issn.1001-8352.2013.01.005]
[4]李静,王伯良,赵新颖,等.高含铝炸药爆炸过程中的能量分析[J].爆破器材,2013,42(02):10.[doi:10.3969/j.issn.1001-8352.2013.02.003]
 LI Jing,WANG Boliang,ZHAO Xinying,et al.Energy Analysis in the Explosion Process of High Aluminized Explosive[J].EXPLOSIVE MATERIALS,2013,42(04):10.[doi:10.3969/j.issn.1001-8352.2013.02.003]
[5]金朋刚,王晓峰,郭炜,等.温压炸药爆炸释热特性研究[J].爆破器材,2014,43(03):1.[doi:10.3969/j.issn.1001-8352.2014.03.001]
 JIN Penggang,WANG Xiaofeng,GUO Wei,et al.Research on the Heat Release Characters of TBX Explosion[J].EXPLOSIVE MATERIALS,2014,43(04):1.[doi:10.3969/j.issn.1001-8352.2014.03.001]
[6]韩早,王伯良,李席.全密闭空间内温压炸药的冲击波参数试验研究[J].爆破器材,2015,44(01):20.[doi:10.3969/j.issn.1001-8352.2015.01.005]
 HAN Zao,WANG Boliang,LI Xi.Experimental Study on Shock Wave Parameters of Thermobaric Explosive in Fully Enclosed Space[J].EXPLOSIVE MATERIALS,2015,44(04):20.[doi:10.3969/j.issn.1001-8352.2015.01.005]
[7]柏小娜,李向东,杨亚东.封闭空间内爆炸冲击波超压计算模型及分布特性研究[J].爆破器材,2015,44(03):22.[doi:10.3969/j.issn.1001-8352.2015.03.005]
 BAI Xiaona,LI Xiangdong,YANG Yadong.Calculation Model and the Distribution of Wave Pressure under Internal Explosion in Closed Space[J].EXPLOSIVE MATERIALS,2015,44(04):22.[doi:10.3969/j.issn.1001-8352.2015.03.005]
[8]张玉磊,翟红波,李芝绒,等.TNT和温压炸药的爆炸火球表面温度对比试验研究[J].爆破器材,2015,44(05):23.[doi:10.3969/j.issn.1001-8352.2015.05.006]
 ZHANG Yulei,ZHAI Hongbo,LI Zhirong,et al.Experimental Research on the Contrast of the Fireball’s Surface Temperature of TNT and Thermobaric Explosive[J].EXPLOSIVE MATERIALS,2015,44(04):23.[doi:10.3969/j.issn.1001-8352.2015.05.006]
[9]程辰①②,林明①,龙源②,等.基于爆炸现场破坏分析的TNT当量快速估算方法研究[J].爆破器材,2018,47(03):37.[doi:10.3969/j.issn.1001-8352.2018.03.007]
 CHENG Chen,LIN Ming,LONG Yuan,et al.Fast Estimation Method of TNT Equivalent Based on Onsite Damage Analysis[J].EXPLOSIVE MATERIALS,2018,47(04):37.[doi:10.3969/j.issn.1001-8352.2018.03.007]
[10]樊凯旋,彭旭,任家帆,等.固体火箭发动机结构意外爆炸的数值模拟与风险评估[J].爆破器材,2020,49(04):58.[doi:10.3969/j.issn.1001-8352.2020.04.010]
 FAN Kaixuan,PENG Xu,REN Jiafan,et al.Numerical Simulation and Risk Assessment of Accidental Explosion of Solid Rocket Engine Structure[J].EXPLOSIVE MATERIALS,2020,49(04):58.[doi:10.3969/j.issn.1001-8352.2020.04.010]

备注/Memo

备注/Memo:
收稿日期:2022-11-22
第一作者:王闯(1997-),男,硕士研究生,主要从事装药参数对温压炸药爆炸特性的影响研究。E-mail: 649906711@qq.com
通信作者:王伯良(1964-),男,教授,博导,主要从事混合炸药配方设计及其应用技术研究。E-mail: boliangwang@njust.edu.cn
更新日期/Last Update: 2023-07-19