[1]樊凯旋,彭旭,任家帆,等.固体火箭发动机结构意外爆炸的数值模拟与风险评估[J].爆破器材,2020,49(04):58-64.[doi:10.3969/j.issn.1001-8352.2020.04.010]
 FAN Kaixuan,PENG Xu,REN Jiafan,et al.Numerical Simulation and Risk Assessment of Accidental Explosion of Solid Rocket Engine Structure[J].EXPLOSIVE MATERIALS,2020,49(04):58-64.[doi:10.3969/j.issn.1001-8352.2020.04.010]
点击复制

固体火箭发动机结构意外爆炸的数值模拟与风险评估()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
49
期数:
2020年04
页码:
58-64
栏目:
安全与测试
出版日期:
2020-07-03

文章信息/Info

Title:
Numerical Simulation and Risk Assessment of Accidental Explosion of Solid Rocket Engine Structure
文章编号:
5432
作者:
樊凯旋彭旭任家帆饶国宁
南京理工大学化工学院(江苏南京,210094)
Author(s):
FAN Kaixuan PENG Xu REN Jiafan RAO Guoning
School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
冲击波超压伤害半径固体推进剂AUTODYN
Keywords:
shock wave overpressure damage radius solid propellant AUTODYN
分类号:
V512
DOI:
10.3969/j.issn.1001-8352.2020.04.010
文献标志码:
A
摘要:
针对固体火箭发动机装配作业过程中可能发生的意外爆炸事故,只考虑冲击波对人的伤害作用,利用显式动力学软件AUTODYN分别对单发产品与双发产品的爆炸过程进行了数值模拟研究。模拟过程中得到了三维空间压力与监测点压力随时间的变化规律。研究结果表明:单发产品爆炸时在X方向上与Y方向上的死亡半径分别为20.5 m和22.0 m,双发产品爆炸时在X方向上与Y方向上的死亡半径分别为24.0 m和32.0 m;死亡半径和冲击波超压的增长与爆炸产品数量的增长呈现非线性关系。
Abstract:
Aiming at the accidental explosion that may occur during the assembly process of solid rocket motors, the explicit dynamics software AUTODYN was used to numerically study the explosion process of single-engine products and double-engine products by considering only the harmful effects of shock waves on people. Pressure distribution within the three-dimensional space and the changes in their values at the monitoring point were obtained by simulation. Results show that the death radiuses are 20.5m and 22.0m, respectively, in the X direction and the Y direction for the single-shot product, and 24.0m and 32.0m, respectively, in the X direction and the Y direction for the double-shot product. Increase in the radius of death and shock wave overpressure has a nonlinear relationship with the increase in the number of explosive products.

参考文献/References:

[1]王克秀,李葆萱,吴心平.固体火箭推进剂及燃烧[M].北京:国防工业出版社,1983.
[2]秦能,廖林泉,范红杰,等.几种典型固体推进剂的危险性能实验研究[J].含能材料,2010,18(3):324-329.
QIN N, LIAO L Q, FAN H J, et al. Sensitivity performances of several typical solid propellants[J]. Chinese Journal of Energetic Materials,2010,18(3) : 324-329 .
[3]伍俊英,陈朗,鲁建英,等.高能固体推进剂冲击起爆特征研究[J].兵工学报,2008,29(11):1315-1319.
WU J Y,CHEN L,LU J Y,et al.Research on shock initiation of the high energy solid propellants [J]. Acta Armamentarii,2008,29(11):1315-1319.
[4]路胜卓,罗卫华,陈卫东,等.壳装高能固体推进剂的殉爆实验与数值模拟[J].哈尔滨工程大学学报,2014,35(12):1507-1511,1552.
LU S Z, LUO W H, CHEN W D, et al. Experimental and numerical simulation of sympathetic detonation of high-energy solid propellant in shell [J]. Journal of Harbin Engineering University, 2014,35(12):1507-1511,1552.
[5]WEISS R R. Review of USAF treatment of solid propel-lant rocket motor hazards:AD -A1504588[R]. 1984.
[6]SALZMAN P K. A methodology for evaluation the explosive hazards of large solid rocket motors: ADA318880[R].1996.
[7]BOGGS T L. Hazard studies for solid propellant rocket motors:N91-13488 [R].1991.
[8]李小柱,裴养卫.固体火箭发动机枪击低易损伤试验研究[J].弹箭与制导学报,2000(2):39-42.
LI X Z,PEI Y W. Low vulnerability experimental study of solid rocket engine under popping condition[J]. Journal of Projectiles, Rockets and Guidance,2000(2):39-42.
[9]殷雅侠,刘平,谷乃古.固体火箭发动机不点火自毁爆炸危险性研究[J].固体火箭技术, 2004,27(2):111-113.
YIN Y X, LIU P, GU N G. Study on the non-ignition self-destruction explosion hazard of SRM[J]. Journal of Solid Rocket Technology, 2004,27(2):111-113.
[10]刘平, 殷雅侠.小型固体火箭发动机低压自毁效果研究[J].固体火箭技术,2004,27(1):22-23,36.
LIU P, YIN Y X. Study on low-pressure self-destruction effect of an analog solid rocket motor [J]. Journal of Solid Rocket Technology,2004,27(1):22-23,36.
[11]陈林泉,毛根旺,张胜勇.高能固体火箭发动机爆炸冲击波毁伤效应研究[J].固体火箭技术,2008,31(6):588-590.
CHEN L Q, MAO G W, ZHANG S Y. Research on damage effect of explosion wave of solid rocket motor with high energy propellant[J]. Journal of Solid Rocket Technology, 2008, 31(6):588-590.
[12]石少卿,汪敏,孙波,等.AUTODYN工程动力学分析及应用实例[M].北京:中国建筑工业出版社,2011.
[13]卢校军,王蓉,黄毅民,等.两种含铝炸药作功能力与JWL状态方程研究[J].含能材料,2005,13(3):144-147.
LU X J, WANG R, HUANG Y M, et al. Study on work ability and JWL equation of state of two aluminized explosives[J]. Energetic Materials, 2005,13(3): 144-147.
[14]王宇涛.基于RHT本构的岩体爆破破碎模型研究[D].北京:中国矿业大学,2015.
WANG Y T. The study of the broken model for rock mass blasting based on RHT constitutive equations[D]. Beijing: China University of Mining and Technology, 2015.
[15]匡志平,袁训康.RHT混凝土本构模型强度参数分析与模拟[J].力学季刊,2012,33(1):158-163.
KUANG Z P, YUAN X K. The analysis and simulation for the strength parameters of RHT concrete model[J]. Chinese Quarterly of Mechanics,2012,33(1):158-163.
[16]张若棋,丁育青,汤文辉,等.混凝土HTC、RHT本构模型的失效强度参数[J].高压物理学报,2011,25(1):15-22.
ZHANG R Q, DING Y Q, TANG W H, et al. The failure strength parameters of HTC and RHT concrete constitutive models [J].Chinese Journal of High Pressure Physics,2011,25(1):15-22.
[17]中国兵器工业火炸药工程与安全技术研究院.军工燃烧爆炸品安全技术规范征求意见稿[Z].2019.
China Ordnance Industry Explosives Engineering and Safety Technology Research Institute. Safety technology code for military burning explosives engineering[Z]. 2019.
[18]柏小娜,李向东,杨亚东.封闭空间内爆炸冲击波超压计算模型及分布特性研究[J].爆破器材,2015,44(3):22-26.
BAI X N, LI X D,YANG Y D. Calculation model and the distribution of wave pressure under internal explosion in closed space [J].Explosive Materials,2015,44(3):22-26.
[19]傅智敏,黄金印,臧娜.爆炸冲击波伤害破坏作用定量分析[J].消防科学与技术,2009,28(6):390-395.
FU Z M,HUANG J Y,ZANG N. Quantitative analysis for consequence of explosion shock wave[J].Fire Science and Technology,2009,28(6):390-395.
[20]阳建红,徐景龙.高能推进剂TNT当量的计算研究[J].计算机仿真,2006,23(6):299-301.

相似文献/References:

[1]陈昊,陶钢.温压弹在有限空间内爆炸的超压测试和分析[J].爆破器材,2009,38(05):4.
 CHEN Hao,TAO Gang.The Test and Analysis on Overpressure Generated by Thermo-baric Grenade Explosion in Limited Space[J].EXPLOSIVE MATERIALS,2009,38(04):4.
[2]徐森①,张兴明①,潘峰①,等.工业炸药能量测试方法的分析[J].爆破器材,2013,42(01):18.[doi:10.3969/j.issn.1001-8352.2013.01.005]
 XU Sen,ZHANG Xingming,PAN Feng,et al.Analysis on the Energy Testing Methods of Industrial Explosives[J].EXPLOSIVE MATERIALS,2013,42(04):18.[doi:10.3969/j.issn.1001-8352.2013.01.005]
[3]李静,王伯良,赵新颖,等.高含铝炸药爆炸过程中的能量分析[J].爆破器材,2013,42(02):10.[doi:10.3969/j.issn.1001-8352.2013.02.003]
 LI Jing,WANG Boliang,ZHAO Xinying,et al.Energy Analysis in the Explosion Process of High Aluminized Explosive[J].EXPLOSIVE MATERIALS,2013,42(04):10.[doi:10.3969/j.issn.1001-8352.2013.02.003]
[4]柏小娜,李向东,杨亚东.封闭空间内爆炸冲击波超压计算模型及分布特性研究[J].爆破器材,2015,44(03):22.[doi:10.3969/j.issn.1001-8352.2015.03.005]
 BAI Xiaona,LI Xiangdong,YANG Yadong.Calculation Model and the Distribution of Wave Pressure under Internal Explosion in Closed Space[J].EXPLOSIVE MATERIALS,2015,44(04):22.[doi:10.3969/j.issn.1001-8352.2015.03.005]
[5]程辰①②,林明①,龙源②,等.基于爆炸现场破坏分析的TNT当量快速估算方法研究[J].爆破器材,2018,47(03):37.[doi:10.3969/j.issn.1001-8352.2018.03.007]
 CHENG Chen,LIN Ming,LONG Yuan,et al.Fast Estimation Method of TNT Equivalent Based on Onsite Damage Analysis[J].EXPLOSIVE MATERIALS,2018,47(04):37.[doi:10.3969/j.issn.1001-8352.2018.03.007]
[6]王闯,李亚宁,李建,等.装药量对温压炸药爆炸毁伤威力的影响[J].爆破器材,2023,52(04):37.[doi:10.3969/j.issn.1001-8352.2023.04.006]
 WANG Chuang,LI Yaning,LI Jian,et al.The Influence of Charge Quantity on the Explosion Damage Power of Thermobaric Explosives[J].EXPLOSIVE MATERIALS,2023,52(04):37.[doi:10.3969/j.issn.1001-8352.2023.04.006]
[7]张学瑞,周涛.空爆条件下硼基燃料对Al/PTFE复合装药能量输出特性的影响[J].爆破器材,2024,53(02):7.[doi:10.3969/j.issn.1001-8352.2024.02.002]
 ZHANG Xuerui,ZHOU Tao.Influence of Boron-Dased Fuel on the Energy Output Characteristics of Al/PTFE Composite Charge under Air Explosion Condition[J].EXPLOSIVE MATERIALS,2024,53(04):7.[doi:10.3969/j.issn.1001-8352.2024.02.002]

备注/Memo

备注/Memo:
收稿日期:2019-11-26
第一作者:樊凯旋(1993-),男,硕士研究生,主要从事安全与爆炸理论方向的研究。E-mail: 834650699@qq.com.
通信作者:饶国宁(1978-),男,副教授,主要从事爆炸理论、定量风险评估方向的研究。E-mail: njraoguoning@163.com
更新日期/Last Update: 2020-07-03