[1]王瑞钧,董振,叶志文.典型含能共晶材料的研究进展[J].爆破器材,2025,54(02):1-13.[doi:10.3969/j.issn.1001-8352.2025.02.001]
 WANG Ruijun,DONG Zhen,YE Zhiwen.Research Progress on Typical Energetic Co-crystal Materials[J].EXPLOSIVE MATERIALS,2025,54(02):1-13.[doi:10.3969/j.issn.1001-8352.2025.02.001]
点击复制

典型含能共晶材料的研究进展()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
54
期数:
2025年02
页码:
1-13
栏目:
基础理论
出版日期:
2025-04-07

文章信息/Info

Title:
Research Progress on Typical Energetic Co-crystal Materials
文章编号:
5980
作者:
王瑞钧董振叶志文
南京理工大学化学与化工学院(江苏南京,210094)
Author(s):
WANG RuijunDONG ZhenYE Zhiwen
School of Chemistry and Chemical Engineering,Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
含能材料共晶共晶制备性能表征含能共晶分类
Keywords:
energetic material co-crystal cocrystal preparation performance characterization classification of energetic co-crystal
分类号:
TQ560; TJ55
DOI:
10.3969/j.issn.1001-8352.2025.02.001
文献标志码:
A
摘要:
含能材料的能量和感度是一对天然共生的矛盾体,一般可以应用共晶技术实现能量与安全性的平衡。综述了含能共晶材料的研究进展,重点关注了TNT、HMX和CL-20这3种典型含能材料的共晶。首先,介绍了含能共晶的形成机理,包括氢键、π-π堆积作用和卤键等分子间的相互作用;接着,讨论了含能共晶的制备方法、性能表征及分类,涵盖物理化学性能、爆轰性能和安全性能等方面;通过分析含能材料和含能氧化剂共晶、两组分含能材料共晶及多组分含能共晶的研究进展,总结了当前含能共晶材料发展中面临的主要问题;最后,提出了扩展含能共晶研究的策略,包括改进制备工艺、扩大含能共晶组分的选择范围、开发更多含能共晶单晶、设计更复杂的多组分含能共晶以及结合人工智能等。
Abstract:
The energy and sensitivity of energetic materials are a natural symbiotic contradiction. Co-crystal technology can generally be applied to achieve a balance between energy and safety. The research progress of energetic co-crystal materials was reviewed, with a focus on three typical energetic materials: TNT, HMX, and CL-20. Firstly, the formation mechanisms of energetic co-crystals were introduced, including intermolecular interactions such as hydrogen bonding, π-π stacking, and halogen bonding. Subsequently, the preparation methods, performance characterization, and classification of energetic co-crystals were discussed, covering aspects such as physical and chemical properties, detonation performance, and safety performance. By analyzing the research progress of energetic materials and energetic oxidizer co-crystals, two-component energetic co-crystals, and multi-component energetic co-crystals, the main challenges faced in the development of energetic co-crystal materials were summarized. Finally, strategies for expanding the research on energetic co-crystals were proposed, including improving preparation processes, expanding the selection range of components for energetic co-crystals, developing more single crystals of energetic co-crystals, designing more complex multi-component energetic co-crystals, and integrating artificial intelligence.

参考文献/References:

[1]ZHANG C Y, HUANG J, BU R P. Intrinsic structures and properties of energetic materials [M]. Beijing: Science Press, Springer, 2023.
[2]XUE Z H, HUANG B, LI H Z, et al. Nitramine-based energetic cocrystals with improved stability and controlled reactivity [J]. Crystal Growth & Design, 2020, 20(12): 8124-8147.
[3]SUN X Y, LIANG W T, LI X D, et al. Structural evolution of CL-20/DNB cocrystals at high temperature: phase transition and kinetics of thermal decomposition [J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2023, 292: 122436.
[4]CHEN D X, XIONG H L, YANG H W, et al. Nitropyrazole based tricyclic nitrogen-rich cation salts: a new class of promising insensitive energetic materials [J]. FirePhysChem, 2021, 1(2): 71-75.
[5]LI C, LIU M W, LI T T, et al. Fluorine added to lead the way to future energetic materials: 3, 5-difluoro-2,4,6-trinitroaniline [J]. Journal of Energetic Materials, 2024, 42(5): 706-715.
[6]JING S M, DENG J H, LI C, et al. High energy explosive with low sensitivity: a new energetic cocrystal based on CL-20 and BMDNP [J]. CrystEngComm, 2024, 26(8): 1126-1132.
[7]RAVI P, BADGUJAR D M, GORE G M, et al. Review on melt cast explosives [J]. Propellants, Explosives, Pyrotechnics, 2011, 36(5): 393-403.
[8]SABATINI J J, OYLER K D. Recent advances in the synthesis of high explosive materials [J]. Crystals, 2016, 6(1): 5.
[9]PAGORIA P F, LEE G S, MITCHELL A R, et al. A review of energetic materials synthesis [J]. Thermochimica Acta, 2002, 384(1/2): 187-204.
[10]MURAVYEV N V, FERSHTAT L, ZHANG Q H. Synthesis, design and development of energetic materials: Quo Vadis[J]. Chemical Engineering Journal, 2024, 486: 150410.
[11]张正中, 谢五喜, 刘运飞, 等. 高氯酸铵降感技术研究进展[J]. 爆破器材, 2023, 52(1): 1-8, 16.
ZHANG Z Z, XIE W X, LIU Y F, et al. Research progress of the desensitization technology of ammonium perchlorate [J]. Explosive Materials, 2023, 52(1): 1-8, 16.
[12]王树涛, 庄怡文, 霸书红, 等. 增材用铝粉表面的包覆改性研究[J]. 爆破器材, 2020, 49(1): 14-17, 23.
WANG S T, ZHUANG Y W, BA S H, et al. Study on surface modification of aluminum powder for additive [J]. Explosive Materials, 2020, 49(1): 14-17, 23.
[13]ZHANG C Y, XIONG Y, JIAO F B, et al. Redefining the term of “cocrystal” and broadening its intention [J]. Crystal Growth & Design, 2019, 19(3): 1471-1478.
[14]SUPONITSKY K Y, FEDYANIN I V, KARNOUKHOVA V A, et al. Energetic co-crystal of a primary metal-free explosive with BTF. ideal pair for co-crystallization [J]. Molecules, 2021, 26(24): 7452.
[15]PANG W Q, WANG K, ZHANG W, et al. CL-20-based cocrystal energetic materials: simulation, preparation and performance [J]. Molecules, 2020, 25(18): 4311.
[16]XU J J, ZHENG S S, HUANG S L, et al. Host-guest energetic materials constructed by incorporating oxidizing gas molecules into an organic lattice cavity toward achieving highly-energetic and low-sensitivity performance [J]. Chemical communications, 2019, 55(7): 909-912.
[17]ZHANG J H, JIN B, PENG R F, et al. Novel strategies for synthesizing energetic materials based on BTO with improved performances [J]. Dalton Transactions, 2019, 48(31): 11848-11854.
[18]GAMEKKANDA J C, SINHA A S, AAKER-Y C B. Cocrystals and salts of tetrazole-based energetic materials [J]. Crystal Growth & Design, 2020, 20(4): 2432-2439.
[19]HERRMANNSDRFER D, KLAP-TKE T M. Semibatch reaction crystallization for scaled-up production of high-quality CL-20/HMX cocrystal: efficient because of solid dosing [J]. Crystal Growth & Design, 2021, 21(3): 1708-1717.
[20]ZHANG X P, CHEN S S, WU Y G, et al. A novel cocrystal composed of CL-20 and an energetic ionic salt [J]. Chemical Communications, 2018, 54(94): 13268-13270.
[21]BERRY D J, STEED J W. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design [J]. Advanced Drug Delivery Reviews, 2017, 117: 3-24.
[22]舒远杰, 武宗凯, 刘宁, 等. 晶形控制及形成共晶:含能材料改性研究的重要途径[J]. 火炸药学报, 2015, 38(5): 1-9.
SHU Y J, WU Z K, LIU N, et al. Crystal control and cocrystal formation:important route of modification research of energetic materials [J]. Chinese Journal of Explosives & Propellants, 2015, 38(5): 1-9.
[23]SANTOS-MARTINS D, FORLI S. Charting hydrogen bond anisotropy [J]. Journal of Chemical Theory and Computation, 2020, 16(4): 2846-2856.
[24]YANG D Z, ZHANG S Z, SUN X G, et al. Deep eutectic solvents formed by quaternary ammonium salts and aprotic organic compound succinonitrile [J]. Journal of Molecular Liquids, 2019, 274: 414-417.
[25]MORRISON H, MROZEK-MORRISON M, TOSCHI J, et al. High throughput bench-top co-crystal screening via a floating foam rack/sonic bath method [J]. Organic Process Research & Development, 2013, 17(3): 533-539.
[26]GUNNAM A, NANGIA A K. Novel hydrate and anhydrate cocrystals/salts of norfloxacin and their physicochemical properties [J]. Crystal Growth & Design, 2023, 23(6): 4198-4213.
[27]QIAO S, LI H Z, LIU Y, et al. Two novel CL-20 cocrystals with different performances obtained by molecular similarity combined with hydrogen bonding pairing energy: an effective strategy to design and screen energetic cocrystals [J]. Crystal Growth & Design, 2024, 24(5): 1977-1986.
[28]HEADEN T F, HOWARD C A, SKIPPER N T, et al. Structure of π-π interactions in aromatic liquids [J]. Journal of the American Chemical Society, 2010, 132(16): 5735-5742.
[29]CARTER-FENK K, HERBERT J M. Reinterpreting π-stacking [J]. Physical Chemistry Chemical Physics, 2020, 22(43): 24870-24886.
[30]BU R P, XIONG Y, ZHANG C Y. π-π stacking contributing to the low or reduced impact sensitivity of energetic materials [J]. Crystal Growth & Design, 2020, 20(5): 2824-2841.
[31]SEN N, ASLAN N, Y-KSEL B, et al. Characterization and properties of a new insensitive explosive co-crystal composed of trinitrotoluene and pyrene [J]. Structural Chemistry, 2024, 35(2): 553-567.
[32]DESIRAJU G R, HO P S, KLOO L, et al. Definition of the halogen bond (IUPAC Recommendations 2013) [J]. Pure and Applied Chemistry, 2013, 85(8): 1711-1713.
[33]METRANGOLO P, MEYER F, PILATI T, et al. Halogen bonding in supramolecular chemistry [J]. Angewandte Chemie International Edition, 2008, 47(33): 6114-6127.
[34]BENNION J C, VOGT L, TUCKERMAN M E, et al. Isostructural cocrystals of 1,3,5-trinitrobenzene assembled by halogen bonding [J]. Crystal Growth & Design, 2016, 16(8): 4688-4693.
[35]MA Y, MENG L Y, LI H Z, et al. Enhancing intermolecular interactions and their anisotropy to build lowimpact-sensitivity energetic crystals [J]. CrystEngComm, 2017, 19(23): 3145-3155.
[36]WALSH R D B, BRADNER M W, FLEISCHMAN S, et al. Crystal engineering of the composition of pharmaceutical phases [J]. Chemical Communications, 2003 (2): 186-187.
[37]REN C X, LIU H, LI X X, et al. Decomposition mechanism scenarios of CL-20 co-crystals revealed by ReaxFF molecular dynamics: similarities and differences [J]. Physical Chemistry Chemical Physics, 2020, 22(5): 2827-2840.
[38]LANDENBERGER K B, MATZGER A J. Cocrystal engineering of a prototype energetic material: supramolecular chemistry of 2, 4, 6-trinitrotoluene [J]. Crystal Growth & Design, 2010, 10(12): 5341-5347.
[39]ZHANG H B, GUO C Y, WANG X C, et al. Five energetic cocrystals of BTF by intermolecular hydrogen bond and π-stacking interactions [J]. Crystal Growth & Design, 2013, 13(2): 679-687.
[40]NEHM S J, RODRIGUEZ-SPONG B, RODRIGUEZ-HORNEDO N. Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation [J]. Crystal Growth & Design, 2006, 6(2): 592-600.
[41]OSWALD I D H, MOTHERWELL W D S, PARSONS S. A 1∶1 co-crystal of quinol and pyridine [J]. Acta Crystallographica Section E: Crystallographic Communications, 2004, 60(11): o1967-o1969.
[42]武文瑜, 韩元淇, 李小东, 等. 喷雾干燥法制备NTO/F2314微球及性能表征[J]. 火炸药学报, 2023, 46(7): 617-624.
WU W Y, HAN Y Q, LI X D, et al. Preparation and characterization of NTO/F2314 microspheres by spray drying method [J]. Chinese Journal of Explosives & Propellants, 2023, 46(7): 617-624.
[43]LIU N, DUAN B H, LU X M, et al. Preparation of CL-20/DNDAP cocrystals by a rapid and continuous spray drying method: an alternative to cocrystal formation [J]. CrystEngComm, 2018, 20(14): 2060-2067.
[44]XIAO L, GUO S F, SU H P, et al. Preparation and characteristics of a novel PETN/TKX-50 co-crystal by a solvent/non-solvent method [J]. RSC advances, 2019, 9(16): 9204-9210.
[45]贺倩倩, 刘玉存, 闫利伟, 等. 悬浮液法制备高纯度CL-20/HMX共晶炸药[J]. 火炸药学报, 2018, 41(1): 82-85.
HE Q Q, LIU Y C, YAN L W, et al. Preparation of high purity CL20/HMX cocrystal explosive by suspension method[J]. Chinese Journal of Explosives & Propellants, 2018, 41(1): 82-85.
[46]TRASK A V, VAN DE STREEK J, MOTHERWELL W D S, et al. Achieving polymorphic and stoichiometric diversity in cocrystal formation: importance of solid-state grinding, powder X-ray structure determination, and seeding [J]. Crystal growth & design, 2005, 5(6): 2233-2241.
[47]郝嘎子, 刘杰, 侯晓婷, 等. 纳米β-Cu的制备及其对超细AP的催化性能[J]. 含能材料, 2015, 23(10): 947-951.
HAO G Z, LIU J, HOU X T, et al. Preparation of nano-sized β-Cu and its catalytic effects on ammonium perchlorate [J]. Chinese Journal of Energetic Materials, 2015, 23(10):947-951.
[48]乔申, 杨宗伟, 李洪珍, 等. TNB/1,4-DNI共晶炸药的制备与表征[J]. 含能材料, 2021, 29(12): 1182-1185.
QIAO S, YANG Z W, LI H Z, et al. Preparation and characterization of a TNB/1, 4-DNI cocrystal explosive [J]. Chinese Journal of Energetic Materials, 2021, 29(12): 1182-1185.
[49]XIAN W P, WANG Z H, SHI L Y, et al. Rapid identification of cocrystal components of explosives based on Raman spectroscopy and principal component analysis [J]. Vibrational Spectroscopy, 2024, 132: 103689.
[50]YANG Z W, WANG H J, ZHANG J C, et al. Rapid cocrystallization by exploiting differential solubility: an efficient and scalable process toward easily fabricating energetic cocrystals [J]. Crystal Growth & Design, 2020, 20(4): 2129-2134.
[51]TAN Y W, LIU Y C, WANG H J, et al. Different stoichiometric ratios realized in energetic-energetic cocrystals based on CL-20 and 4, 5-MDNI: a smart strategy to tune performance [J]. Crystal Growth & Design, 2020, 20(6): 3826-3833.
[52]LI B T, ZHOU M C, PENG J, et al. Theoretical calculations about nitro-substituted pyridine as high-energy-density compounds (HEDCs) [J]. Journal of Molecular Modeling, 2019, 25(1): 23.
[53]GENG W J, MA Q, CHEN Y, et al. Structure-performance relationship in thermally stable energetic materials: tunable physical properties of benzopyridotetraaza-pentalene by incorporating amino groups, hydrogen bonding, and π-π interactions [J]. Crystal Growth & Design, 2020, 20(3): 2106-2114.
[54]ZHAO X T, FU X L, ZHANG G L, et al. Study on the cocrystallization mechanism of CL-20/HMX in a propellant aging process through theoretical calculations and experiments [J]. ACS Omega, 2022, 7(8): 7361-7369.
[55]王彩玲, 赵省向, 戴致鑫, 等. CL-20晶体粒度和形貌对其机械感度及火焰感度的影响[J]. 爆破器材, 2014, 43(5): 1-5.
WANG C L, ZHAO S X, DAI Z X, et al. Effect of the particle size and surface appearance on mechanical sensitivity and flame sensitivity of CL-20 [J]. Explosive Materials, 2014, 43(5): 1-5.
[56]李鹤群. 液相超声法制备CL-20/HMX共晶炸药与表征[J]. 广东化工, 2018, 45(6): 96-97, 72.
LI H Q. Preparation and characterization of CL-20/HMX cocrystal explosive by the liquid phase ultrasonic method [J]. Guangdong Chemical Industry, 2018, 45(6): 96-97, 72.
[57]任晓婷, 卢艳华, 陆志猛, 等. 超细CL-20/HMX共晶的制备、表征及其与推进剂组分的相容性[J]. 含能材料, 2020, 28(2): 137-144.
REN X T, LU Y H, LU Z M, et al. Preparation, characterization of ultrafine CL-20/HMX cocrystal explosive and its compatibility with the components of propellants [J]. Chinese Journal of Energetic Materials, 2020, 28(2): 137-144.
[58]刘皓楠, 王建华, 刘玉存, 等. HMX/ANPZO共晶炸药的制备与表征[J]. 火炸药学报, 2017, 40(2): 47-51, 56.
LIU H N, WANG J H, LIU Y C, et al. Preparation and characterization of HMX/ANPZO cocrystal explosives [J]. Chinese Journal of Explosives & Propellants, 2017, 40(2): 47-51, 56.
[59]BAO L X, LU P H, FEI T, et al. Crystal structure and explosive performance of a new CL-20/benzaldehyde cocrystal [J]. Journal of Molecular Structure, 2020, 1215: 128267.
[60]LEVINTHAL M L. Propellant made with cocrystals of cyclotetramethylenetetranitramine and ammonium perchlorate: US 4086110 A [P]. 1978-04-25.
[61]ZOHARI N, MOHAMMADKHANI F G, ZABET Z, et al. Preparation and characterization of the nitramine-based energetic cocrystal composed of HMX and AP [J]. Journal of Energetic Materials, 2024, 42(4): 518-528.
[62]LANDENBERGER K B, MATZGER A J. Cocrystals of 1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazacyclooctane (HMX) [J]. Crystal Growth & Design, 2012, 12(7): 3603-3609.
[63]MILLAR D I A, MAYNARD-CASELY H E, ALLAN D R, et al. Crystal engineering of energetic materials: co-crystals of CL-20 [J]. CrystEngComm, 2012, 14(10): 3742-3749.
[64]BENNION J C, CHOWDHURY N, KAMPF J W, et al. Hydrogen peroxide solvates of 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane[J]. Angewandte Chemie International Edition, 2016, 55(42): 13118-13121.
[65]LIN H, CHEN J F, ZHU S G, et al. Synthesis, characterization, detonation performance, and DFT calculation of HMX/PNO cocrystal explosive [J]. Journal of Energetic Materials, 2017, 35(1): 95-108.
[66]SEN N. Characterization and properties of a new energetic co-crystal composed of trinitrotoluene and 2, 6-diaminotoluene [J]. Journal of Molecular Structure, 2019, 1179: 453-461.
[67]DU S J, ZHAO Y S, OU Y P, et al. A novel insensitive cocrystal explosive composed of BTF and the nonenergetic 2-nitroaniline [J]. Crystals, 2024, 14(8): 722.
[68]BOLTON O, MATZGER A J. Improved stability and smart-material functionality realized in an energetic cocrystal [J]. Angewandte Chemie International Edition, 2011, 50(38): 8960-8963.
[69]BERNSTEIN J. Polymorphism in molecular crystals [M]. New York: Oxford University Press, 2007.
[70]BOLTON O, SIMKE L R, PAGORIA P F, et al. High power explosive with good sensitivity: a 2∶1 cocrystal of CL-20∶HMX [J]. Crystal Growth & Design, 2012, 12(9): 4311-4314.
[71]LIU K, ZHANG G, LUAN J Y, et al. Crystal structure, spectrum character and explosive property of a new cocrystal CL-20/DNT [J]. Journal of Molecular Structure, 2016, 1110: 91-96.
[72]MA Q, JIANG T, CHI Y, et al. A novel multi-nitrogen 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane-based energetic co-crystal with 1-methyl-3,4,5-trinitropyrazole as a donor: experimental and theoretical investigations of intermolecular interactions [J]. New Journal of Chemistry, 2017, 41(10): 4165-4172.
[73]YANG Z W, WANG H J, MA Y, et al. Isomeric cocrystals of CL-20: a promising strategy for development of high-performance explosives [J]. Crystal Growth & Design, 2018, 18(11): 6399-6403.
[74]TAN Y W, YANG Z W, WANG H J, et al. High energy explosive with low sensitivity: a new energetic cocrystal based on CL-20 and 1,4-DNI [J]. Crystal Growth & Design, 2019, 19(8): 4476-4482.
[75]JIA Q, ZHANG J Q, ZHANG S J, et al. Low-temperature heat capacities, standard molar enthalpies of formation and detonation performance of two CL-20 cocrystal energetic materials [J]. Fluid Phase Equilibria, 2020, 518: 112638.
[76]YIN Y, WANG J K, CHEN J, et al. Thermal kinetics of energetic CL-20/BTF cocrystal induced by strong intermolecular coupling [J]. The Journal of Physical Chemistry C, 2022, 126(19): 8199-8207.
[77]YU Y, MIAO S Y, JIA K H, et al. A new CL-20/1, 4-DNP cocrystal explosive with good comprehensive performance [J]. Propellants, Explosives, Pyrotechnics, 2023, 48(5): e202200280.
[78]DIPPOLD A A, KLAP-TKE T M. Nitrogen-rich bis-1,2,4-triazoles: a comparative study of structural and energetic properties [J]. Chemistry: A European Journal, 2012, 18(52): 16742-16753.
[79]BENNION J C, MCBAIN A, SON S F, et al. Design and synthesis of a series of nitrogen-rich energetic cocrystals of 5,5’-dinitro-2H,2H’-3,3’-bi-1,2,4-triazole (DNBT) [J]. Crystal Growth & Design, 2015, 15(5): 2545-2549.
[80]HANG G Y, YU W L, WANG T, et al. Theoretical investigations on structures, stability, energetic performance, sensitivity, and mechanical properties of CL-20/TNT/HMX cocrystal explosives by molecular dynamics simulation [J]. Journal of Molecular Modeling, 2019, 25(1): 10.
[81]HANG G Y, WANG T, LU C, et al. Designing and property prediction of a novel three-component CL-20/HMX/TNAD energetic cocrystal explosive by MD method [J]. Journal of Molecular Modeling, 2023, 29(3): 78.
[82]ZHANG X P, WU Y G, JIN S H, et al. A novel ternary energetic compound: DAF/DNP/H-2O cocrystal [J]. Journal of Energetic Materials, 2024, 42(1): 84-96.

相似文献/References:

[1]薛艳,任小明,解瑞珍,等.硅基含能材料爆炸性能研究[J].爆破器材,2011,40(05):12.
 XUE Yan,REN Xiaoming,XIE Ruizhen,et al.Explosion Properties of Nanosiliconbased Energetic Materials[J].EXPLOSIVE MATERIALS,2011,40(02):12.
[2]张涛,陈明华,贾昊楠,等.热分解动力学在含能材料中的应用[J].爆破器材,2013,42(06):52.[doi:10.3969/j.issn.1001-8352.2013.06.011]
 ZHANG Tao,CHEN Minghua,JIA Haonan,et al.Application of Thermal Decomposition Kinetics in Energetic Materials[J].EXPLOSIVE MATERIALS,2013,42(02):52.[doi:10.3969/j.issn.1001-8352.2013.06.011]
[3]陈言坤①,甄建伟①,武慧恩②,等.粒状发射药动态破碎研究进展[J].爆破器材,2014,43(01):41.[doi:10.3969/j.issn.1001-8352.2014.01.009]
 CHEN Yankun,ZHEN Jianwei,WU Huien,et al.Research Progress of Dynamic Fracture of Granular Propellant[J].EXPLOSIVE MATERIALS,2014,43(02):41.[doi:10.3969/j.issn.1001-8352.2014.01.009]
[4]马宁,苏杨,秦能,等.1L慢烤燃装置温场分布数值模拟与试验研究[J].爆破器材,2014,43(03):14.[doi:10.3969/j.issn.1001-8352.2014.03.004]
 MA Ning,SU Yang,QIN Neng,et al.Numerical Simulation and Experimental Study of Temperature Field Distribution in 1L Slow Cook-off Device[J].EXPLOSIVE MATERIALS,2014,43(02):14.[doi:10.3969/j.issn.1001-8352.2014.03.004]
[5]葛亚庆,许田田,杨君龙,等.5-氨基四唑/氧化铜气体发生剂燃烧性质的研究[J].爆破器材,2014,43(06):35.[doi:10.3969/j.issn.1001-8352.2014.06.008]
 GE Yaqing,XU Tiantian,YANG Junlong,et al.Study on Combustion Performance of 5Aminotetrazole/Copper Oxide Gasgenerating Agent[J].EXPLOSIVE MATERIALS,2014,43(02):35.[doi:10.3969/j.issn.1001-8352.2014.06.008]
[6]鲁学峰①,卫延安①②.N,N-双四唑胺的合成工艺改进与研究[J].爆破器材,2015,44(02):14.[doi:10.3969/j.issn.1001-8352.2015.02.004]
 LU Xuefeng,WEI Yanan.Study and Improvement of the Synthesis of N,N-Bis(1H-tetrazol-5-yl)amine[J].EXPLOSIVE MATERIALS,2015,44(02):14.[doi:10.3969/j.issn.1001-8352.2015.02.004]
[7]盛涤伦,陈利魁,朱雅红,等.耐高温起爆药叠氮化镉的合成与性能研究[J].爆破器材,2015,44(03):12.[doi:10.3969/j.issn.1001-8352.2015.03.003]
 SHENG Dilun,CHEN Likui,ZHU Yahong,et al.Synthesis and Performance of a Primary Explosive Resisting High Temperature Named Cadmium Azide[J].EXPLOSIVE MATERIALS,2015,44(02):12.[doi:10.3969/j.issn.1001-8352.2015.03.003]
[8]屈可朋,沈飞,肖玮,等.一种RDX基PBX炸药力学性能和本构关系研究[J].爆破器材,2015,44(03):31.[doi:10.3969/j.issn.1001-8352.2015.03.007]
 QU Kepeng,SHEN Fei,XIAO Wei,et al.Mechanical Behavior and Constitutive Model of one RDXbased PBX Explosive[J].EXPLOSIVE MATERIALS,2015,44(02):31.[doi:10.3969/j.issn.1001-8352.2015.03.007]
[9]李家宽,马小霞,胡艳,等.KNO3/GO复合含能材料的制备与表征[J].爆破器材,2016,45(02):1.[doi:10.3969/j.issn.1001-8352.2016.02.001]
 LI Jiakuan,MA Xiaoxia,HU Yan,et al.Preparation and Characterization of KNO3/GO Composite Energetic Materials[J].EXPLOSIVE MATERIALS,2016,45(02):1.[doi:10.3969/j.issn.1001-8352.2016.02.001]
[10]屈可朋,王晓峰,何超,等.撞击条件下分步压装装药的点火机理[J].爆破器材,2016,45(03):22.[doi:10.3969/j.issn.1001-8352.2016.03.005]
 QU Kepeng,WANG Xiaofeng,HE Chao,et al.Ignition Mechanism of Step Press Loading Charge under Impact Loading[J].EXPLOSIVE MATERIALS,2016,45(02):22.[doi:10.3969/j.issn.1001-8352.2016.03.005]

备注/Memo

备注/Memo:
收稿日期:2024-10-10
第一作者:王瑞钧(2000— ),女,博士研究生,主要从事含能材料结晶的研究。E-mail:wangruijun@njust.edu.cn
通信作者:叶志文(1968—),男,教授,博导,主要从事含能材料的研究。E-mail:yezw@njust.edu.cn
更新日期/Last Update: 2025-04-07