[1]张宇庭 徐振洋 闫祎然 宋家威 秦涛.封闭体系内丁烷-空气预混气体爆炸的试验研究[J].爆破器材,2024,53(01):51-56.[doi:10.3969/j.issn.1001-8352.2024.01.008]
 ZHANG Yuting,XU Zhenyang,YAN Yiran,et al.Experimental Study on the Explosion of Premixed Gas of Butane and Air in a Closed System[J].EXPLOSIVE MATERIALS,2024,53(01):51-56.[doi:10.3969/j.issn.1001-8352.2024.01.008]
点击复制

封闭体系内丁烷-空气预混气体爆炸的试验研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年01
页码:
51-56
栏目:
爆炸材料
出版日期:
2024-01-19

文章信息/Info

Title:
Experimental Study on the Explosion of Premixed Gas of Butane and Air in a Closed System
文章编号:
5844
作者:
张宇庭 徐振洋 闫祎然 宋家威 秦涛
辽宁科技大学矿业工程学院(辽宁鞍山,114051)
Author(s):
ZHANG Yuting XU Zhenyang YAN Yiran SONG Jiawei QIN Tao
School of Mining Engineering, University of Science and Technology Liaoning (Liaoning Anshan, 114051)
关键词:
预混气体封闭管道爆炸压力火焰速度
Keywords:
premixed gas closed pipeline explosion pressure flame speed
分类号:
TQ560.7; X932
DOI:
10.3969/j.issn.1001-8352.2024.01.008
摘要:
为研究不同浓度丁烷-空气预混气体在封闭管道内的燃爆特性,利用方形密闭爆炸试验管道对不同体积分数的丁烷空气预混气体进行爆炸试验。结果表明:气体爆炸先后经历了压力上升第一阶段、压力上升第二阶段和压力下降阶段;随着丁烷气体浓度的上升,爆炸压力上升速率、最大火焰速度、火焰加速度都呈先升高、后降低的趋势;其中,当丁烷体积分数为5%时,上述参数均达到峰值;含水管道中,气相与液相的爆炸压力趋势基本一致,但相较于无水管道中的压力变化更为平缓,并且最大爆炸压力及升压速率都较低。为可燃气体燃爆问题研究提供理论参考。
Abstract:
In order to investigate the combustion and explosion characteristics of butane-air premixed gases with various concentrations in enclosed pipelines, a squareshaped sealed experimental pipeline was utilized to conduct explosion tests on butaneair premixed gas with different volume fractions of butane. The results indicate that it goes through three stages including initial pressure rise, secondary pressure rise, and pressure decrease in gas explosion. As the concentration of butane gas increases, the increase rate of explosion pressure, maximum flame velocity, and flame acceleration all show a trend of first increasing and then decreasing. When the volume fraction of butane is 5%, the above parameters all reach their peak. In pipelines containing water, the change trends of explosion pressure in the gas phase and liquid phase are basically the same, but compared to pipelines without water, the pressure changes are smoother, and the maximum explosion pressure and pressure increase rate are lower. It provides a theoretical basis for the study on combustible gas explosion.

参考文献/References:

[1]李哲, 陈先锋, 孙玮康. 浓度梯度对甲烷-空气混合气体爆炸特性参数的影响[J]. 振动与冲击, 2021, 40(11): 26-32.
LI Z, CHEN X F, SUN W K. Effect of concentration gradient on explosion characteristic parameters of methane-air mixture [J]. Journal of Vibration and Shock, 2021, 40(11): 26-32.
[2]HUANG L J, WANG Y, ZHANG L, et al. Influence of pressure on the flammability limits and explosion pressure of ethane/propane-air mixtures in a cylinder vessel [J]. Journal of Loss Prevention in the Process Industries, 2022, 74: 104638.
[3]GARCIA-AGREDA A, DI BENEDETTO A, RUSSO P, et al. Dust/gas mixtures explosion regimes [J]. Powder Technology, 2011, 205(1/2/3): 81-86.
[4]SONG Y F, ZHANG Q. Criterion and propagation process of spark-induced dust layer explosion [J]. Fuel, 2020, 267: 117205.
[5]WANG D, QIAN X M, JI T C, et al. Flammability limit and explosion energy of methane in enclosed pipeline under multi-phase conditions [J]. Energy, 2021, 217: 119355.
[6]THOMAS G O, OAKLEY G L. An experimental investigation of the coupling between gaseous explosion pressures and a water volume in a closed vessel [J]. Process Safety and Environmental Protection, 2010, 88(1): 20-23.
[7]余明高, 孔杰, 王燕, 等. 不同浓度甲烷-空气预混气体爆炸特性的试验研究[J]. 安全与环境学报, 2014, 14(6): 85-90.
YU M G, KONG J, WANG Y, et al. Experiment study on explosion characteristic features of the methaneair premixture at different concentrations [J]. Journal of Safety and Environment, 2014, 14(6): 85-90.
[8]秦毅, 陈小伟, 黄维. 密闭空间可燃气体爆炸超压预测[J]. 爆炸与冲击, 2020, 40(3): 032202.
QIN Y, CHEN X W, HUANG W. Overpressure prediction of combustible gas explosion in confined space [J]. Explosion and Shock Waves, 2020, 40(3): 032202.
[9]钟飞翔, 郑立刚, 马鸿雁, 等. CH4/O2/CO2预混体系爆炸动力学研究[J]. 爆炸与冲击, 2022, 42(1): 012101.
ZHONG F X, ZHENG L G, MA H Y, et al. A study of explosion dynamics of a CH4/O2/CO2 premixed system [J]. Explosion and Shock Waves, 2022, 42(1): 012101.
[10]蒋晓燕, 王文露, 卞维柏, 等. 甲烷的生成及对木质素二聚体热解过程的影响[J]. 分子科学学报, 2023, 39(2): 111-117.
JIANG X Y, WANG W L, BIAN W B, et al. Formation mechanism of methane and its effect on the lignin pyrolysis process [J]. Journal of Molecular Science, 2023, 39(2): 111-117.
[11]贾进章, 冯路阳. 密闭直管内瓦斯爆炸温度和压力的实验研究[J]. 爆破器材, 2018, 47(1): 22-25.
JIA J Z, FENG L Y. Experimental study on gas explosion temperature and pressure in closed straight tube [J]. Explosive Materials, 2018, 47(1): 22-25.
[12]章文义, 李玉艳, 潘峰, 等. 丙烷-氧气预混气体的火焰传播及点火特性[J]. 爆破器材, 2019, 48(4): 27-32.
ZHANG W Y, LI Y Y, PAN F, et al. Flame propagation and ignition properties of propane-oxygen premixed gas [J]. Explosive Materials, 2019, 48(4): 27-32.
[13]李润之, 司荣军. 瓦斯浓度对爆炸压力及压力上升速率影响[J]. 西安科技大学学报, 2010, 30(1): 29-33.
LI R Z, SI R J. Effect of gas concentration on the explosion pressure and pressure rise rate [J]. Journal of Xian University of Science and Technology, 2010, 30(1): 29-33.
[14]池旭辉, 彭松, 赵程远, 等. 复合固体推进剂高温加速试验理论与方法(1): Arrhenius方程的适用性 [J]. 含能材料, 2022, 30(8): 853-860.
CHI X H, PENG S, ZHAO C Y, et al. Theories and methodology of high temperature accelerated test for composite solid propellants (1): the applicability of Arrhenius equation [J]. Chinese Journal of Energetic Materials, 2022, 30(8): 853-860.
[15]ZHU F H, XIONG W, LI X F, et al. A new flow stress model based on Arrhenius equation to track hardening and softening behaviors of Ti6Al4V alloy [J]. Rare Metals, 2018, 37(12): 1035-1045.
[16]刘国伟, 董芃, 韩亚芬, 等. 富氧条件下煤燃烧特性的热重分析实验研究[J]. 哈尔滨工业大学学报, 2011, 43(1): 104-108.
LIU G W, DONG P, HAN Y F, et al. Experimental study on combustion characteristics of coals under enriched-oxygen condition by thermo-gravimetric analysis [J]. Journal of Harbin Institute of Technology, 2011, 43(1): 104-108.
[17]杨春丽, 刘艳, 李祥春. 甲烷/空气混合气体爆炸基元反应特征及能量分析[J]. 煤矿安全, 2018, 49(5): 171-174.
YANG C L, LIU Y, LI X C. Elementary reaction characteristics and energy analysis of methane and air mixture exploration [J]. Safety in Coal Mines, 2018, 49(5): 171-174.
[18]马红和, 朱旭东, 李春玉, 等. 基于H2S生成简化动力学模型的富燃料煤粉燃烧数值模拟研究[J]. 中国电机工程学报, 2021, 41(9): 3240-3249.
MANG H H, ZHU X D, LI C Y, et al. Numerical simulation of fuel-rich combustion of pulverized coal with reduced kinetic model of H2S formation [J]. Proceedings of the CSEE, 2021, 41(9): 3240-3249.
[19]黄建青, 李磊, 蔡伟伟. 贫燃熄火实验预测方法综述[J]. 实验流体力学, 2018, 32(2): 1-9.
HUANG J Q, LI L, CAI W W. Experimental prediction of lean blowont:a review [J]. Journal of Experiments in Fluid Mechanics, 2018, 32(2): 1-9.
[20]王悦, 白春华, 李斌, 等. 密闭空间瞬态液雾粒径及浓度测量实验研究[J]. 兵工学报, 2015, 36(9): 1665-1670.
WANG Y, BAI C H, LI B, et al. The experimental study of transient droplets particle size and concentrationin confined spaces [J]. Acta Armamentarii, 2015, 36(9): 1665-1670.

相似文献/References:

[1]李玉艳①,王红松②,蒋榕培③,等.N2O-C2H4预混气体火焰的传播特性[J].爆破器材,2019,48(06):33.[doi:10.3969/j.issn.1001-8352.2019.06.007]
 LI Yuyan,WANG Hongsong,JIANG Rongpei,et al.Flame Propagation Characteristics of Premixed N2O and C2H4[J].EXPLOSIVE MATERIALS,2019,48(01):33.[doi:10.3969/j.issn.1001-8352.2019.06.007]
[2]吉昌泉,贾凡,李斌,等.初始压力和富氧系数对CH4/O2/N2预混气体爆炸特性的影响[J].爆破器材,2023,52(03):16.[doi:10.3969/j.issn.1001-8352.2023.03.003]
 JI Changquan,JIA Fan,LI Bin,et al.Effect of Initial Pressure and Oxygen Enrichment Factor on the Explosion Characteristics of CH4/O2/N2 Premixed Gases[J].EXPLOSIVE MATERIALS,2023,52(01):16.[doi:10.3969/j.issn.1001-8352.2023.03.003]

备注/Memo

备注/Memo:
收稿日期:2023-05-24
第一作者:张宇庭(2000—),男,硕士研究生,主要从事爆破与安全工程的研究。E-mail:1648678535@qq.com
通信作者:徐振洋(1982—),男,博士,教授,主要从事工程爆破理论与技术的研究。E-mail:45816328@qq.com
更新日期/Last Update: 2024-01-12