[1]WILDEGGER-GAISSMAIER A E.Aspects of thermobaric weaponry[J].Military Technology,2004,28(6):125-126.
[2]王晓峰, 冯晓军. 温压炸药设计原则探讨[J]. 含能材料, 2016, 24(5): 418-420.
WANG X F, FENG X J. Discussion on the design principles of thermobaric explosives[J]. Chinese Journal of Energetic Materials, 2016, 24(5): 418-420.
[3]朴忠杰, 张爱娥, 罗宇, 等. 铝粉粒度对奥克托今基空爆温压炸药能量释放的影响[J]. 兵工学报, 2019, 40(6): 1190-1197.
PIAO Z J, ZHANG A E, LUO Y, et al. Influence of aluminum powder on energy release of HMX-based air-blast thermobaric explosives[J]. Acta Armamentarii, 2019, 40(6): 1190-1197.
[4]王明烨, 韩志伟, 李席, 等. 铝粉粒径对温压炸药爆炸性能及热安定性的影响[J]. 高压物理学报, 2018, 32(3): 107-114.
WANG M Y, HAN Z W, LI X, et al. Influence of aluminum particle size on explosion performance and thermal stability of thermobaric explosive[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 107-114.
[5]NIELSEN A T, CHAFIN A P, CHRISTIAN S L, et al. Synthesis of polyazapolycyclic caged polynitramines [J]. Tetrahedron, 1998, 54(39): 11793-11812.
[6]GEETHA M, NAIR U R, SARWADE D B, et al. Studies on CL-20: the most powerful high energy material[J]. Journal of Thermal Analysis and Calorimetry, 2003, 73(3): 913-922.
[7]CHOSH M, VENKATESAN V, SIKDER N, et al. Quantitative analysis of α-CL-20 polymorphic impurity in ε-CL-20 using dispersive raman spectroscopy [J]. Central European Journal of Energetic Materials, 2013, 10(3): 419-438.
[8]欧育湘, 刘进全. 高能量密度化合物[M]. 北京: 国防工业出版社, 2005: 11-12.
OU Y X, LIU J Q. High energy density compound[M]. Beijing: National Defense Industry Press, 2005: 11-12.
[9]SIMPSON R L, URTIEW P A, ORNELLAS D L, et al. CL-20 performance exceeds that of HMX and its sensitivity is moderate[J].Propellants, Explosives, Pyrotechnics,1997, 22(5): 249-255.
[10]欧育湘, 孟征, 刘进全. 高能量密度化合物CL-20应用研究进展[J]. 化工进展, 2007, 26(12): 1690-1694.
OU Y X, MENG Z, LIU J Q. Review of the development of application technologies of CL20[J]. Chemical Industry and Engineering Progress, 2007, 26(12): 1690-1694.
[11]宋振伟, 李笑江. 高能量密度化合物HNIW的最新研究进展及其应用前景[J]. 化学推进剂与高分子材料, 2011, 9(1): 40-45, 60.
SONG Z W, LI X J. Recent research progress and application prospect of high energy density compound HNIW[J]. Chemical Propellants & Polymeric Materials, 2011, 9(1): 40-45,?60.
[12]NAIR U R, SIVABALAN R, GORE G M, et al. Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations (review)[J]. Combustion Explosion & Shock Waves, 2005, 41(2): 121-132.
[13]LOUIS C, SCOTT H, ANDREW S, et al. Development of alternate process for the synthesis of CL-20[C]//Proceedings of 32nd International Annual Conference of ICT. Karlsruhe, DE: Fraunhofer ICT, 2001: 108-117.
[14]CHIQUETE C, JACKSON S I. Detonation performance of the CL-20-based explosive LX-19[J]. Proceedings of the Combustion Institute, 2021, 38(3):3661-3669.
[15]DONALD A, GEISS J. Additional characterization of high performance CL-20 formulation [C]//Proceedings of 30th International Annual Conference of ICT. Karlsruhe, DE: Fraunhofer ICT, 1999: 167-180.
[16]BALAS W, NICOLICH S, CAPELLOS C. CL-20 PAX explosives formulation development, characterization, and testing[C]//NDIA 2003 IM/EM Technology Symposium. Miami, FL, US, 2003: 181-185.
[17]王昕, 彭翠枝. 国外六硝基六氮杂异伍兹烷的发展现状[J]. 火炸药学报, 2007, 30(5): 45-48, 87.
WANG X, PENG C Z. Development of Hexanitrohexaazaisowurtaitane at abroad[J]. Chinese Journal of Explosives & Propellants, 2007, 30(5): 45-48, 87.
[18]COOK M A, FILLER A S, KEYES R T. Aluminized explosives[J]. The Journal of Physical Chemistry, 1957, 61(2): 189-196.
[19]高旭东, 郭敏, 孙韬, 等.炮射温压弹对人员目标的毁伤效能研究[J]. 弹箭与制导学报, 2011, 31(3): 123-125, 128.
GAO X D, GUO M, SUN T, et al. The damage efficiency research on cannon thermobaric ammunition to personnel target[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2011, 31(3): 123-125, 128.