[1]李玉艳①,王红松②,蒋榕培③,等.N2O-C2H4预混气体火焰的传播特性[J].爆破器材,2019,48(06):33-38.[doi:10.3969/j.issn.1001-8352.2019.06.007]
 LI Yuyan,WANG Hongsong,JIANG Rongpei,et al.Flame Propagation Characteristics of Premixed N2O and C2H4[J].EXPLOSIVE MATERIALS,2019,48(06):33-38.[doi:10.3969/j.issn.1001-8352.2019.06.007]
点击复制

N2O-C2H4预混气体火焰的传播特性()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
48
期数:
2019年06
页码:
33-38
栏目:
基础理论
出版日期:
2019-12-09

文章信息/Info

Title:
Flame Propagation Characteristics of Premixed N2O and C2H4
文章编号:
5358
作者:
李玉艳王红松蒋榕培李智鹏朱辛育徐森潘峰解立峰
①南京理工大学化工学院(江苏南京,210094)
②南京海关危险货物与包装检测中心(江苏常州,213022)
③北京航天实验技术研究所(北京,100074)
Author(s):
LI Yuyan WANG Hongsong JIANG Rongpei LI Zhipeng ZHU Xinyu XU Sen PAN Feng XIE Lifeng
① School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② Nanjing Customs Testing Center for Dangerous Goods and Packaging (Jiangsu Changzhou,213022)
③ Beijing Insitute of Aerospace Testing Technology (Beijing, 100074)
关键词:
预混气体实验研究数值模拟N2O-C2H4
Keywords:
premixed gas experimental study numerical simulation N2O-C2H4
分类号:
X932;O643.2
DOI:
10.3969/j.issn.1001-8352.2019.06.007
文献标志码:
A
摘要:
运用标准k-ε模型,对N2O-C2H4预混气体在水平半封闭管道内火焰传播过程进行了数值模拟,得到了火焰锋面结构、传播速度、出口压力和燃烧区的气流速度随时间的变化规律。研究结果表明,管道内预混火焰传播过程分为3个阶段:点火初期的平面火焰传播阶段、Tulip火焰传播阶段和指形火焰传播阶段;火焰传播速度呈指数增长,管道出口处压力和气流速度均呈现出先增大后减小的趋势。同时,采用高速摄影系统、压力传感器、有机玻璃管等装置对预混气体的火焰加速进程和压力演变过程进行了验证,实验结果与数值模拟结果一致。
Abstract:
Flame propagation of premixed N2O-C2H4 in a horizontal semi-closed tube was numerically simulated by using the standard k-ε model. Time dependence of flame front structure, propagation velocity, outlet pressure, and flow speed in combustion zone was obtained. The results show that the process of premixed flame propagation in tube could be divided into three stages, which are plane flame propagation stage, tulip flame propagation stage and finger flame propagation stage. Flame acceleration presents the exponential trend, and pressure at the vent of the tube and flow speed of the premixed mixture first increase and then decline. At the same time, high speed photographic system, pressure sensor, and PMMA tube were used to study on the flame speed and pressure, which agree with the simulated results.

参考文献/References:

[1]宋长青, 徐万武, 张家奇, 等. 氧化亚氮推进技术研究进展[J]. 火箭推进, 2014, 40(2):7-15.
SONG C Q, XU W W, ZHANG J Q, et al.Research progress of nitrous oxide propulsion technology [J]. Journal of Rocket Propulsion, 2014,40(2):7-15.
[2]朱成财, 韩伟, 于忻立, 等. 氧化亚氮基单元复合推进剂技术研究述评[J]. 火箭推进, 2016, 42(2):79-85.
ZHU C C, HAN W, YU X L, et al. Review of nitrous-oxide-based composite monopropellants technology [J].Journal of Rocket Propulsion, 2016,42(2):79-85.
[3]MERRILL C.Nitrous oxide explosive hazards:AFRL-RZ-ED-TP-2008-184[R]. Edwards AFB, CA, USA:Air Force Research Laboratory,2008.
[4]MUNGAS G,VOZOFF M,RISHIKOF B,et al.NOFBX? monopropulsion overview[C]//14th Annual FAA Commercial Space Transportation Conference.USA,2011.
[5]POWELL O A, PAPAS P, DREYER C. Laminar burning velocities for hydrogen-, methane-, acetylene-, and propanenitrous oxide flames[J]. Combustion Science and Technology, 2009, 181(7): 917-936.
[6]POWELL O, DREYER C, PAPAS P. Laminar flame speeds of propane-nitrous oxide mixtures[C]//47th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition.Orlando, FL, USA, 2009.
[7]李智鹏,孙海云, 蒋榕培, 等. 乙烯-氧化亚氮层流预混燃烧过程研究[J]. 火箭推进, 2018,44(5):37-42.?
LI Z P, SUN H Y, JIANG R P, et al.Study on premixed laminar combustion process of ethylene/nitrous oxide mixture[J]. Journal of Rocket Propulsion, 2018,44(5):37-42.
[8]GRAMS M P, SAUSA R C. Flame structure studies of neat and NH3-doped H2/N2O/Ar flames by laser-induced fluorescence, mass spectrometry, and modeling [J]. Combustion Science and Technology, 2011, 183(11): 1184-1202.
[9]POWELL O A, PAPAS P, DREYER C B. Hydrogen-and C1-C3 hydrocarbon-nitrous oxide kinetics in freely propagating and burner-stabilized flames, shock tubes, and flow reactors[J]. Combustion Science and Technology, 2010, 182(3): 252-283.
[10]BANE S P M, MVEL R, CORONEL S A, et al. Flame burning speeds and combustion characteristics of undiluted and nitrogendiluted hydrogen-nitrous oxide mixtures[J]. International Journal of Hydrogen Energy, 2011, 36(16):10107-10116.
[11]POWELL O A, PAPAS P, DREYER C B. Flame structure measurements of NO in premixed hydrogen-nitrous oxide flames[J]. Proceedings of the Combustion Institute, 2011, 33(1):1053-1062.
[12]MEVEL R, LAFOSSE F, CHAUMEIX N, et al. Spherical expanding flames in H2-N2O-Ar mixtures: flame speed measurements and kinetic modeling[J]. International Journal of Hydrogen Energy, 2009, 34(21):9007-9018.
[13]POWELL O, PAPAS P. Flame structure measurements of nitric oxide in hydrocarbon-nitrous-oxide flames[J]. Journal of Propulsion and Power, 2012, 28(5):1052-1059.
[14]STARIKOVSKAIA S M, ANIKIN N B, KOSAREV I N, et al. Analysis of ignition by nonequilibrium sources. Ignition of homological series of hydrocarbons by volume nanosecond discharge [C]//44th AIAA Aerospace Sciences Meeting and Exhibit. Reno, NEV,USA,2006.
[15]HOCHHEIMER B, PERAKIS N, WERLING L,et al. Test facilities to assess properties of a nitrous oxide/ethene premixed bipropellant for satellite propulsion system[C]//Meet the Space Conference 2014.Krakow, Polard, 2014.
[16]GRUBELICH M C, VENKATESH P B, GRAZIANO T J, et al. Deflagration-to-detonation transition in nitrous oxide-ethylene mixtures and its application to pulsed propulsion systems [C]//55th AIAA Aerospace Sciences Meeting. Grapevine, TX,USA,2017.
[17]ZHANG B, LIU H, WANG C. Detonation velocity behavior and scaling analysis for ethylene-nitrous oxide mixture[J]. Applied Thermal Engineering, 2017, 127: 671-678.
[18]KOSHIBA Y, NISHIDA T, MORITA N, et al. Explosion behavior of n-alkane/nitrous oxide mixtures[J]. Process Safety and Environmental Protection, 2015, 98: 11-15.
[19]KOSHIBA Y, HASEGAWA T, KIM B, et al. Flammability limits, explosion pressures, and applicability of Le Chateliers rule to binary alkane-nitrous oxide mixtures[J]. Journal of Loss Prevention in the Process Industries, 2017, 45: 1-8.
[20]MOVILEANU C, RAZUS D, MITU M, et al. Explosion of C2H4-N2O-N2 in elongated closed vessels[C]//Proceedinds of the 7th European Combustion Meeting.Budapest, Hungary, 2015.
[21]WERLING L K, HOCHHEIMER B, BARAL A L, et al. Experimental and numerical analysis of the heat flux occurring in a nitrous oxide/ethene green propellant combustion demonstrator[C]//51st AIAA/SAE/ASEE Joint Propulsion Conference. Orlando, FL, USA, 2015.
[22]WERLING L, HAβLER M, BATZ P, et al. Experimental performance analysis (c* & c* efficiency) of a premixed green propellant consisting of N2O and C2H4[C]//53rd AIAA/SAE/ASEE Joint Propulsion Conference. Atlanta, GA, USA, 2017.
[23]郑凯. 管道中氢气/甲烷混合燃料爆燃预混火焰传播特征研究[D].重庆:重庆大学,2017.
?ZHENG K. Study on the propagation characteristics of premixed flame of hydrogen/methane deflagration in ducts[D].Chongqing:Chongqing University,2017.
[24]SALZANO E, MARRA F S, RUSSO G, et al. Numerical simulation of turbulent gas flames in tubes[J]. Journal of Hazardous Materials, 2002, 95(3): 233-247.
[25]BAULCH D L, BOWMAN C T, COBOS C J, et al. Evaluated kinetic data for combustion modeling: supplement II[J]. Journal of Physical and Chemical Reference Data, 2005, 34(3): 757-1397.
[26]WU C K,LAW C K.On the determination of laminar flame speeds from stretched flames[J].Symposium (International) on Combustion,1985,20(1):1941-1949.
[27]PONIZY B, CLAVERIE A, VEYSSIRE B. Tulip flame-the mechanism of flame front inversion[J]. Combustion and Flame, 2014, 161(12):3051-3062.
[28]陈先锋, 孙金华, 姚礼殷,等. Tulip火焰形成过程中的细微结构特性[J]. 燃烧科学与技术, 2008, 14(4):350-354.
?CHEN X F, SUN J H, YAO L Y, et al. Characteristics of fine structure during tulip flame forming [J]. Journal of Combustion Science and Technology, 2008, 14(4):350-354.
[29]SOW A,CHINNAYYA A,HADJADJ A.Mean structure of one-dimensional unstable detonations with friction[J].Journal of Fluid Mechanics,2014,743:503-533.
[30]喻健良, 周崇, 刘润杰. 管道内预混气体爆燃过程的实验研究[J]. 石油与天然气化工, 2004, 33(6): 453-455,466.
?YU J L, ZHOU C, LIU R J. Experimental investigation into deflagration of premixed gases in tubes[J]. Chemical Engineering of Oil and Gas, 2004,33(6): 453-455,466.
[31]左焕阳. 开放空间预混燃气火焰传播过程的数值模拟[D].哈尔滨:哈尔滨工程大学,2017.
?ZUO H Y.Numerical simulation of premixed gas flame propagation in open space [D]. Harbin:Harbin Engineering University,2017.

相似文献/References:

[1]吉昌泉,贾凡,李斌,等.初始压力和富氧系数对CH4/O2/N2预混气体爆炸特性的影响[J].爆破器材,2023,52(03):16.[doi:10.3969/j.issn.1001-8352.2023.03.003]
 JI Changquan,JIA Fan,LI Bin,et al.Effect of Initial Pressure and Oxygen Enrichment Factor on the Explosion Characteristics of CH4/O2/N2 Premixed Gases[J].EXPLOSIVE MATERIALS,2023,52(06):16.[doi:10.3969/j.issn.1001-8352.2023.03.003]
[2]张宇庭 徐振洋 闫祎然 宋家威 秦涛.封闭体系内丁烷-空气预混气体爆炸的试验研究[J].爆破器材,2024,53(01):51.[doi:10.3969/j.issn.1001-8352.2024.01.008]
 ZHANG Yuting,XU Zhenyang,YAN Yiran,et al.Experimental Study on the Explosion of Premixed Gas of Butane and Air in a Closed System[J].EXPLOSIVE MATERIALS,2024,53(06):51.[doi:10.3969/j.issn.1001-8352.2024.01.008]

备注/Memo

备注/Memo:
收稿日期:2019-05-14
基金项目:国防科技创新特区项目第一作者:李玉艳(1985-),女,博士研究生,主要从事推进剂安全性能相关研究。E-mail: lyy.piao@163.com
通信作者:潘峰(1971-),男,副教授,主要从事含能材料相关研究。E-mail: pfhycc@163.com
更新日期/Last Update: 2019-12-04