[1]曹威,郭向利,段英良,等.不同气氛对TATB基含铝炸药爆热的影响[J].爆破器材,2016,45(02):34-37.[doi:10.3969/j.issn.1001-8352.2016.02.008]
 CAO Wei,GUO Xiangli,DUAN Yingliang,et al.Detonation Heat of TATB-based Aluminized Explosive in Different Atmospheres[J].EXPLOSIVE MATERIALS,2016,45(02):34-37.[doi:10.3969/j.issn.1001-8352.2016.02.008]
点击复制

不同气氛对TATB基含铝炸药爆热的影响()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
45
期数:
2016年02
页码:
34-37
栏目:
爆炸材料
出版日期:
2016-03-27

文章信息/Info

Title:
Detonation Heat of TATB-based Aluminized Explosive in Different Atmospheres
文章编号:
4995
作者:
曹威郭向利段英良昝继超韩勇刘世俊
中国工程物理研究院化工材料研究所(四川绵阳,621900)
Author(s):
CAO Wei GUO Xiangli DUAN Yingliang ZAN Jichao HAN Yong LIU Shijun
Institute of Chemical Materials, China Academy of Engineering Physics (Sichuan Mianyang, 621900)
关键词:
爆炸力学TATB基含铝炸药爆热爆炸产物后燃反应
Keywords:
explosion mechanics TATB-based aluminized explosive detonation heat explosion products afterburning reaction
分类号:
O389
DOI:
10.3969/j.issn.1001-8352.2016.02.008
文献标志码:
A
摘要:
为了测定三氨基三硝基苯(TATB)基含铝炸药在不同气氛中的爆热,使用绝热式量热弹对其压装药在真空、0.1 MPa氮气、0.1 MPa空气、0.1 MPa氧气和1.5 MPa氧气条件下的爆热进行了测量,研究了其能量释放规律,并使用X射线衍射(XRD)对固相产物成分进行了分析。结果表明:TATB基含铝炸药在真空、0.1 MPa氮气、0.1 MPa空气、0.1 MPa氧气和1.5 MPa氧气条件下的爆热依次增加;环境中压力的增加会导致爆热值增大,在0.1 MPa氮气中,TATB基含铝炸药的爆热值比真空中增加了15.7%。环境中氧气量的增加也使爆热值增大:0.1 MPa空气中的爆热值比0.1 MPa氮气中增加了7.8%,0.1 MPa氧气中的爆热值比0.1 MPa氮气中高出49.7%,1.5 MPa氧气中的爆热值比0.1 MPa氮气中高出146.1%。在富氧气氛下测试TATB基含铝炸药的爆热时,所测爆热接近于炸药的燃烧热,且爆炸产物的XRD结果也表明Al粉已基本氧化完全。同时,在0.1 MPa氮气气氛下没有检测到氮化物AlN的存在。该方法可对不同气氛下含铝炸药的爆热进行测量,并对爆炸产物中Al的存在形式进行分析。
Abstract:
To measure the heat generation of triaminotrinitrobenzene(TATB)-based aluminized explosive in different atmospheres, the exotherm of pressed charge in vacuum, 0.1 MPa nitrogen, 0.1 MPa air, 0.1 MPa oxygen and 1.5 MPa oxygen were measured by adiabatic calorimetric bomb and the energy release rule was studied.Then the solid explosion products were detected by Xray diffraction (XRD). Results show that the heat output of TATBbased aluminized explosive increased gradually in the sequence of vacuum, 0.1 MPa nitrogen, 0.1 MPa air, 0.1 MPa oxygen and 1.5 MPa oxygen; the increase of atmospheric pressure results in the increase of heat output, which is shown that the heat output in 0.1 MPa nitrogen increased by 15.7% than that in vacuum; and the heat output increases with the increase of oxygen amount in atmosphere, which is verified by the conclusion that the heat output in 0.1 MPa air was 7.8% larger than that in 0.1 MPa nitrogen, the heat output in 0.1 MPa oxygen was 49.7% higher than that in 0.1 MPa nitrogen, and the heat output in 1.5MPa oxygen was 146.1% higher than that in 0.1 MPa nitrogen. In the case that the heat output of TATB-based aluminized explosive was measured in oxygen-rich atmosphere, the measured heat  output was close to the combustion heat, and the XRD of the explosion products verified that the aluminum powders were almost completely oxidized. Meanwhile, AlN was not detected in 0.1MPa nitrogen. It provides a method to measure the heat output of aluminized explosives and analyze the existing form of aluminum element in explosion products.
 

参考文献/References:

[1]孙业斌,惠君明,曹欣茂. 军用混合炸药[M]. 北京:兵器工业出版社, 1995.
SUN Y B, HUI J M, CAO X M. Military Composite Explosives[M]. Beijing: Ordnance Industry Press, 1995.
[2]MILLER P J. A reactive flow model with coupled reaction kinetics for detonation and combustion in non-ideal explosives[C]//MRS Proceedings.Cambridge:Cambridge University Press, 1996(418):413-420.
[3]ORNELLAS D L. Calorimetric determinations of the heat and products of detonation for explosives: October 1961 to April 1982:UCRL-52821[R].California: Berkeley Lawrence Livermore Lab., 1982.
[4]KICI-SKI W, TRZCI-SKI W. Calorimetry studies of explosion heat of non-ideal explosives[J]. Journal of Thermal Analysis and Calorimetry, 2009, 96(2): 623-630.
[5]裴明敬,胡华权,张景森,等. 含铝温压炸药及其爆炸效能研究[J]. 中国工程科学,2008, 11(4): 67-75.
PEI M J,HU H Q, ZHANG J S, et al. Study on efficiency of aluminized thermobaric explosive[J]. Engineering Sciences, 2008, 11(4): 67-75.
[6]李媛媛,王晓峰,牛余雷,等. 环境氧含量对含铝炸药爆热的影响[J].火炸药学报,2014,37(2):49-52, 56.
LI Y Y, WANG X F, NIU Y L, et al. Effects of environment oxygen content on heat of detonation of aluminized explosive [J]. Chinese Journal of Explosives & Propellants, 2014, 37(2): 4952, 56.
[7]韩勇,韩敦信,陈红霞,等. 含铝炸药爆热的实验研究[J].含能材料,2002,10(2):78-80.
HAN Y, HAN D X,CHEN H X, et al. Experimental research of detonation heat of Al-containing explosives[J]. Energetic Materials, 2002, 10(2): 78-80.
[8]ARNOLD W, ROTTENKOLBER E. Combustion of an aluminized explosive in a detonation chamber[C]// Proceedings of the 39th International Annual Conference of ICT. Karlsruhe: ICT, 2008.
[9]冯晓军,王晓峰,李媛媛,等. 铝粉粒度和爆炸环境对含铝炸药爆炸能量的影响[J].火炸药学报,2013,36(6):24-27.
 FENG X J, WANG X F, LI Y Y, et al. Effects of aluminum particle size and explosion atmosphere on the energy of explosion aluminized explosive[J]. Chinese Journal of Explosives & Propellants, 2013, 36(6): 24-27.
[10]金朋刚,郭炜,任松涛,等. TNT密闭环境中能量释放特性研究[J]. 爆破器材,2014, 43(2): 10-14.
JIN P G, GUO W, REN S T, et al. Research on TNT energy release characteristics in enclosed condition[J]. Explosive Materials, 2014, 43(2): 10-14.
[11]Cao W, He Z Q, Chen W H, et al. Measurement of afterburning effect of underoxidized explosives by underwater explosion method[J]. Journal of Energetic Materials, 2015, 33(2): 116-124.
[12]曹威,何中其,陈网桦,等. 水下爆炸法测量含铝炸药后燃效应[J].含能材料,2012,20(2):229-233.
CAO W, HE Z Q, CHEN W H, et al. Measurement of afterburning effect of aluminized explosives by underwater explosion method[J]. Chinese Journal of Energetic Materials, 2012, 20(2): 229-233.

相似文献/References:

[1]安二峰,杨军,陈鹏万.高锰钢整铸辙叉爆炸硬化实践与研究[J].爆破器材,2009,38(02):25.
 AN Erfeng,YANG Jun,CHEN Pengwan.Study on Explosive Hardening of Hadfield Steel Rail Frogs[J].EXPLOSIVE MATERIALS,2009,38(02):25.
[2]徐森①,张兴明①,潘峰①,等.工业炸药能量测试方法的分析[J].爆破器材,2013,42(01):18.[doi:10.3969/j.issn.1001-8352.2013.01.005]
 XU Sen,ZHANG Xingming,PAN Feng,et al.Analysis on the Energy Testing Methods of Industrial Explosives[J].EXPLOSIVE MATERIALS,2013,42(02):18.[doi:10.3969/j.issn.1001-8352.2013.01.005]
[3]臧立伟,尹建平,王志军.轴向预制破片战斗部的设计研究[J].爆破器材,2013,42(02):5.[doi:10.3969/j.issn.1001-8352.2013.02.002]
 ZANG liwei,YIN Jianping,WANG Zhijun.Optimizing Design of Axial Prefabricated Fragments[J].EXPLOSIVE MATERIALS,2013,42(02):5.[doi:10.3969/j.issn.1001-8352.2013.02.002]
[4]姚志华,李德战,付庆海,等.偏心亚半球成型装药结构的数值模拟[J].爆破器材,2013,42(02):17.[doi:10.3969/j.issn.1001-8352.2013.02.005]
 YAO Zhihua,LI Dezhan,FU Qinghai,et al.Numerical Simulation of Shape Charge with an Eccentric Subhemisphere Liner[J].EXPLOSIVE MATERIALS,2013,42(02):17.[doi:10.3969/j.issn.1001-8352.2013.02.005]
[5]杨亚东,李向东,王晓鸣.爆炸冲击波空中传播特征参量的优化拟合[J].爆破器材,2014,43(01):13.[doi:10.3969/j.issn.1001-8352.2014.01.003]
 YANG Yadong,LI Xiangdong,WANG Xiaoming.Optimum Fitting for Characteristic Parameters of Blast Shockwaves Traveling in Air[J].EXPLOSIVE MATERIALS,2014,43(02):13.[doi:10.3969/j.issn.1001-8352.2014.01.003]
[6]金朋刚,郭炜,任松涛,等.TNT密闭环境中能量释放特性研究[J].爆破器材,2014,43(02):10.[doi:10.3969/j.issn.1001-8352.2014.02.003]
 JIN Penggang,GUO Wei,REN Songtao,et al.Research on TNT Energy Release Characteristics in Enclosed Condition[J].EXPLOSIVE MATERIALS,2014,43(02):10.[doi:10.3969/j.issn.1001-8352.2014.02.003]
[7]冯海云,胡宏伟,赵向军,等.一种评估炸药作功能力的新测试方法[J].爆破器材,2014,43(02):33.[doi:10.3969/j.issn.1001-8352.2014.02.008]
 FENG Haiyun,HU Hongwei,ZHAO Xiangjun,et al.A New Test Method to Assess the Acting Ability of Explosive[J].EXPLOSIVE MATERIALS,2014,43(02):33.[doi:10.3969/j.issn.1001-8352.2014.02.008]
[8]郑思友,翟廷海,夏斌.工业雷管抗弯性能试验装置与方法设计[J].爆破器材,2014,43(03):33.[doi:10.3969/j.issn.1001-8352.2014.03.008]
 ZHENG Siyou,ZHAI Tinghai,XIA Bin.Testing System and Method Design of the Bending Resistance of Industrial Detonator[J].EXPLOSIVE MATERIALS,2014,43(02):33.[doi:10.3969/j.issn.1001-8352.2014.03.008]
[9]杨斐,王建灵,罗一鸣,等.DNTF/AP/Al体系炸药的能量特性分析[J].爆破器材,2014,43(05):11.[doi:10.3969/j.issn.1001-8352.2014.05.003]
 YANG Fei,WANG Jianling,LUO Yiming,et al.Explosion Energy Characteristics of DNTF/AP/Al Explosive[J].EXPLOSIVE MATERIALS,2014,43(02):11.[doi:10.3969/j.issn.1001-8352.2014.05.003]
[10]沈飞,王辉,余然,等.两种含铝炸药水中近场冲击波传播规律研究[J].爆破器材,2014,43(05):26.[doi:10.3969/j.issn.1001-8352.2014.05.006]
 SHEN Fei,WANG Hui,YU Ran,et al.Propagation Characteristics of Close-field Shock Wave for Two Aluminized Explosives by Underwater Explosion[J].EXPLOSIVE MATERIALS,2014,43(02):26.[doi:10.3969/j.issn.1001-8352.2014.05.006]

备注/Memo

备注/Memo:
收稿日期:2010-01-28
基金项目:国家自然科学基金(11372291),中国工程物理研究院化工材料研究所创新基金(KJCX-201202)
作者简介:曹威(1988~ ),男,博士,助理研究员,主要从事炸药爆轰安全性能研究。E-mail: weicao668@163.com
通信作者:郭向利(1987~ ),女,硕士,助理研究员,主要从事炸药爆轰安全性能研究。E-mail: g-x_l@163.com
更新日期/Last Update: 2016-03-28