参考文献/References:
[1]崔绪生.国外鱼雷技术进展综述[J].鱼雷技术, 2003, 11(1):6-11.
Cui Xusheng. A Summary of progress in torpedo technology over the world [J]. Torpedo Technology, 2003, 11(1):6-11.
[2]崔贵平. 国外反鱼雷鱼雷技术发展及趋势[J].舰船科学技术. 2013, 35(3): 138-141.
Cui Guiping. Foreign antitorpedo torpedo development and trend analysis [J]. Ship Science and Technology, 2013,35(3): 138-141.
[3]郑孟菊,俞统昌,张银亮. 炸药的性能及测试技术[M]. 北京:兵器工业出版社,1990.
[4]惠君明,陈天云. 炸药爆炸理论[M]. 南京:江苏科学技术出版社,1995.
[5]王晨,伍俊英,陈朗,等.壳装炸药殉爆实验和数值模拟[J].爆炸与冲击,2010,30(2): 152-158.
Wang Chen, Wu Junying, Chen Lang, et al. Experiments and numerical simulations of sympathetic detonation of explosives in shell [J]. Explosion and Shock Waves, 2010, 30(2): 152-158.
[6]科尔 R H.水下爆炸[M].罗耀杰,等,译.北京:国防工业出版社,1960: 195-196, 202-205.
Cole R H.Underwater explosions[M].Beijing:National Defense Industry Press,1960: 195-196, 202-205.
[7]Bjarnholt G.Suggestions on standards for measurement and data evaluation in the underwater explosion test[J]. Propellants, Explosives,Pyrotechnics,1980,5(2/3):67-74.
[8]王建灵,赵东奎,郭炜,等.水下爆炸能量测试中炸药入水深度的确定[J].火炸药学报,2002,25(2):30-31,44.
Wang Jianling, Zhao Dongkui, Guo Wei,et al. Determination of reasonable depth of explosives in water to measure underwater explosive energy[J]. Chinese Journal of Explosives & Propellants,2002,25(2):30-31,44.
[9]袁俊明,张庆明,刘彦.炸药感度测试兰利法与升降法比较研究[J].含能材料, 2008, 16(1):86-89.
Yuan Junming, Zhang Qingming, Liu Yan. Comparison study on langlie method and upanddown method for sensitivity test of explosive[J]. Chinese Journal of Energetic Materials, 2008, 16(1):86-89.
[10]黄兴中,王志军.水下爆炸气泡脉动的数值研究[J].爆破器材,2013,42(6):19-23.
Huang Xingzhong,Wang Zhijun. Numerical study of underwater explosion bubble pulse[J].Explosine Materials,2013,42(6):19-23.
[11]李静,王伯良,赵新颖,等.高含铝炸药爆炸过程的能量分析[J].爆破器材,2013,42(2):10-13.
Li Jing, Wang Boliang, Zhao Xinying, et al. Engergy analysis in the explosion process of high aluminized explosive[J].Explosine Materials,2013,42(2):10-13.
[12]王振雄,顾文彬,秦入平,等.水下深孔爆破间隔装药起爆时差影响的数值模拟[J].爆破器材,2012,41(3):8-11,15.
Wang Zhenxiong, Gu Wenbin, Qin Ruping, et al.Numerical simulation of the effect of initiation time difference on underwater deephole compartment blasting[J].Explosive Materials,2012,41(3):8-11,15.
[13]徐豫新,王树山,李园.水下爆炸数值仿真研究[J].弹箭制导学报,2009,29(6):95-97.
Xu Yuxin, Wang Shushan, Li Yuan. Study on numerical simulation of the underwater explosive[J].Journal of Projectiles, Rockets,Missiles and Guidance,2009,29(6):95-97.
[14]汪斌,张远平,王彦平.水中爆炸气泡脉动现象的实验研究[J].爆炸与冲击,2008,28(6):572-576.
Wang Bin, Zhang Yuanping, Wang Yanping. Experimental study on bubble oscillation formed during underwater explosions[J].Explosion and Shock Waves,2008,28(6):572-576.
[15]胡毅亭,贾宪振,饶国宁,等.水下爆炸冲击波和气泡脉动的数值模拟研究[J].舰船科学技术,2009,31(2):134-140.
Hu Yiting, Jia Xianzhen,Rao Guoning, et al. Numerical study of underwater explosion shock wave and bubble pulse[J].Ship Science and Technology,2009,31(2):134-140.
[16]恽寿榕,赵衡阳.爆炸力学[M].北京:国防工业出版社,2005.
相似文献/References:
[1]沈飞,王辉,余然,等.两种含铝炸药水中近场冲击波传播规律研究[J].爆破器材,2014,43(05):26.[doi:10.3969/j.issn.1001-8352.2014.05.006]
SHEN Fei,WANG Hui,YU Ran,et al.Propagation Characteristics of Close-field Shock Wave for Two Aluminized Explosives by Underwater Explosion[J].EXPLOSIVE MATERIALS,2014,43(03):26.[doi:10.3969/j.issn.1001-8352.2014.05.006]
[2]任新联,王辉,徐司雨,等.铝粉粒度对RDX基含铝炸药水中爆炸近场特性的影响[J].爆破器材,2015,44(06):29.[doi:10.3969/j.issn.1001-8352.2015.06.007]
REN Xinlian,WANG Hui,XU Siyu,et al.The Effect of Aluminum Particle Size on the Characteristic of RDX Based Aluminized Explosives Underwater Close-filed Explosion[J].EXPLOSIVE MATERIALS,2015,44(03):29.[doi:10.3969/j.issn.1001-8352.2015.06.007]
[3]姜涛,王桂芹,詹发民,等.基于AUTODYN的潜艇典型舱段水中爆炸冲击损伤研究[J].爆破器材,2015,44(06):60.[doi:10.3969/j.issn.1001-8352.2015.06.014]
JIANG Tao,Wang Guiqin,ZHAN Famin,et al.Impact Damage Analysis of Typical Submarine Compartment Subjected to Underwater BlastingBased on AUTODYN[J].EXPLOSIVE MATERIALS,2015,44(03):60.[doi:10.3969/j.issn.1001-8352.2015.06.014]
[4]严家佳,贾宪振,任松涛.一种传感器结构对水中爆炸冲击波影响的数值模拟研究[J].爆破器材,2016,45(01):7.[doi:10.3969/j.issn.1001-8352.2016.01.002]
YAN Jiajia,JIA Xianzhen,REN Songtao.Numerical Simulation of Underwater Explosion Shock Wave Influenced by the Structure of One Sensor[J].EXPLOSIVE MATERIALS,2016,45(03):7.[doi:10.3969/j.issn.1001-8352.2016.01.002]
[5]范士锋.氧化剂对炸药水中爆炸能量输出结构的影响[J].爆破器材,2017,46(02):43.[doi:10.3969/j.issn.1001-8352.2017.02.010]
FAN Shifeng.Influence of Oxidant on the Energy Output Configuration of Underwater Explosion[J].EXPLOSIVE MATERIALS,2017,46(03):43.[doi:10.3969/j.issn.1001-8352.2017.02.010]
[6]岳纪炜,陈玉,侯斯婕,等.工业炸药成品装车位的隔爆设计[J].爆破器材,2017,46(04):25.[doi:10.3969/j.issn.1001-8352.2017.04.005]
YUE Jiwei,CHEN Yu,HOU Sijie,et al.Explosion-interrupted Design for Product Loading Unit of Industrial Explosives[J].EXPLOSIVE MATERIALS,2017,46(03):25.[doi:10.3969/j.issn.1001-8352.2017.04.005]
[7]汪成运,魏志丰,何鹏鹏.炸药殉爆的研究进展与展望[J].爆破器材,2022,51(06):1.[doi:10.3969/j.issn.1001-8352.2022.06.001]
WANG Chengyun,WEI Zhifeng,HE Pengpeng.Research Progress of Sympathetic Detonation of Explosives[J].EXPLOSIVE MATERIALS,2022,51(03):1.[doi:10.3969/j.issn.1001-8352.2022.06.001]