[1]叶纬东①,乔治军②③,李嘉颢①,等.含铝凝胶燃料的流变特性研究[J].爆破器材,2022,51(02):17-25.[doi:doi:10.3969/j.issn.1001-8352.2022.02.003]
 YE Weidong,QIAO Zhijun,LI Jiahao,et al.Rheological Properties of Aluminium-Containing Gel Fuel[J].EXPLOSIVE MATERIALS,2022,51(02):17-25.[doi:doi:10.3969/j.issn.1001-8352.2022.02.003]
点击复制

含铝凝胶燃料的流变特性研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
51
期数:
2022年02
页码:
17-25
栏目:
基础理论
出版日期:
2022-04-06

文章信息/Info

Title:
Rheological Properties of Aluminium-Containing Gel Fuel
文章编号:
5671
作者:
叶纬东乔治军②③李嘉颢李雅茹马含王伯良
①南京理工大学化学与化工学院(江苏南京,210094)
②南京理工大学机械学院(江苏南京,210094)
③93184部队(北京,100000)
Author(s):
YE Weidong QIAO Zhijun②③ LI Jiahao LI Yaru① MA Han WANG Boliang
① School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
② School of Mechanical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
③ Unit 93184 (Beijing, 100000)
关键词:
纳米凝胶剂凝胶燃料剪切变稀性蠕变性非线性黏弹性
Keywords:
nano gellant gel fuel shear thinning creep nonlinear viscoelasticity
分类号:
TQ560.7; O373
DOI:
doi:10.3969/j.issn.1001-8352.2022.02.003
文献标志码:
A
摘要:
在庚烷/硝酸异丙酯混合体系中加入不同粒径的无机纳米凝胶剂,实现燃料凝胶化;并在部分样品中添加纳米铝粉,制得一系列凝胶燃料;以此来研究凝胶剂粒径和铝粉含量对凝胶燃料流变性能的影响规律。采用激光共聚焦显微镜、比重杯和氧弹量热仪测试凝胶燃料的微观形貌、密度与燃烧热;利用流变仪测试凝胶燃料的剪切变稀性、蠕变性以及非线性黏弹性等流变性能。结果表明:凝胶化的燃料具有更高的密度和体积燃烧热;大粒径凝胶剂体系的假塑性更明显,网络强度更大,但内部结构易碎;铝粉的加入破坏了絮凝体网络的连续性,增强了凝胶燃料的塑性,降低了蠕变恢复能力,但会提升凝胶燃料的整体强度。添加质量分数20%的铝粉后,凝胶燃料的零切黏度η0提高了6倍,储能模量G0 提高了3倍,蠕变恢复能力rc 下降了33%。
Abstract:
In the mixed system of heptane/isopropyl nitrate, different sizes of inorganic nano gel were added to fuel gelation, and a series of gel fuels were prepared by adding nano aluminum powder in some samples. Effects of gel size and aluminum content on rheological properties of gel fuel were investigated. A confocal microscope, a specific gravity cup and an oxygen bomb calorimeter were used to test the micro morphology, density and combustion heat of fuel. Rheological properties of fuel, such as shear thinning, creep and nonlinear viscoelasticity, were measured by a rheometer. Results show that the gelation fuel has higher density and volumetric combustion heat. Pseudoplasticity of the large-size gel system is more obvious, the network strength is bigger, but the internal structure is fragile. The addition of aluminum powder destroys the continuity of the agglomerate network, enhances the plasticity of the gel fuel, reduces the creep recovery ability, but enhances the overall strength of the gel fuel. After adding 20% (mass fraction) aluminum powder, η0?of gel fuel increases by six times, G0increases by three times, and rc decreases by 33%.

参考文献/References:

[1]张奇, 闫华, 白春华. 固液混合燃料物理稳定性分析[J]. 火炸药学报, 2003, 26(4): 47-50.
ZHANG Q, YAN H, BAI C H. Analysis on the physical stability of the solid-liquid mixed fuel[J]. Chinese Journal of Explosives & Propellants, 2003, 26(4): 47-50.
[2]CHUNG H S, CHEN C S H, KREMER R A, et al. Recent developments in high-energy density liquid hydrocarbon fuels[J]. Energy Fuels, 1999, 13(3): 641-649.
[3]GUAN H S, LI G X, ZHANG N Y. Experimental investigation of atomization characteristics of swirling spray by ADN gelled propellant[J]. Acta Astronautica, 2018,144: 119-125.
[4]曹锦文, 潘伦, 张香文, 等. 含纳米铝颗粒的JP10凝胶燃料理化及流变性能[J]. 含能材料, 2020, 28(5): 382-390.
CAO J W, PAN L, ZHANG X W, et al. Physicochemical and rheological properties of Al/JP-10 gelled fuel[J]. Chinese Journal of Energetic Materials, 2020, 28(5): 382-390.
[5]JUSTIN L S, RICHARD A Y, BLAINE W A, et al. Effect of nano-aluminum and fumed silica particles on deflagration and detonation of nitromethane[J]. Propellants, Explosives, Pyrotechnics, 2009, 34(5): 385-393.
[6]郑强. 高分子流变学[M]. 北京: 科学出版社, 2020.ZHENG Q. Polymer rheology[M]. Beijing: Science Press, 2020.
[7]蔡锋娟, 张蒙正. 凝胶推进剂雾化研究现状及问题[J]. 火箭推进, 2010, 36(4): 24-30.
CAI F J, ZHANG M Z. Status and problems of gelled propellants atomization research[J]. Journal of Rocket Propulsion, 2010, 36(4): 24-30.
[8]RICHARD A, PAULO H S, OSVALDO C. Rheological and thermal behavior of gelled hydrocarbon fuels[J]. Journal of Propulsion and Power, 2011, 27(1): 151-161.
[9]郑重. 气相二氧化硅/极性低聚物纳米复合材料的界面调控与流变行为研究[D]. 杭州: 浙江大学, 2016.
ZHENG Z. Interfacial regulation and rheological behavior of fumed silica/polar oligomer nanocomposites[D]. Hangzhou: Zhejiang University, 2016.
[10]RAGHAVAN S R, KHAN S A, WALLS H J. Rheology of silica dispersions in organic liquids: new evidence for solvation forces dictated by hydrogen bonding[J]. Langmuir, 2000, 16(21): 7920-7930.
[11]WU X J, WANG Y, YANG W, et al. A rheological study on temperature dependent microstructural changes of fumed silica gels in dodecane[J]. Soft Matter, 2012, 8(40):10457-10463.?
[12]鄂秀天凤, 潘伦, 张香文, 等. 高触变性高密度凝胶碳氢燃料的制备及性能[J]. 含能材料, 2019, 27(6): 501-508.
E X T F, PAN L, ZHANG X W, et al. Synthesis and performance of highdensity and high-thixotropy gelled hydrocarbon fuels[J]. Chinese Journal of Energetic Materials, 2019, 27(6): 501-508.
[13]WU X J, WANG Y, WANG M, et al. Structure of fumed silica gels in dodecane: enhanced network by oscillatory shear[J]. Colloid & Polymer Science, 2012, 290(2): 151-161.
[14]姜菡雨, 姚二岗, 张建侃, 等. 铝基亚稳态复合物与典型黏合剂混合物的流变性能[J]. 含能材料, 2021, 29(10): 914-919.
JIANG H Y, YAO E G, ZHANG J K, et al. Rheological behavior of the compound mixed with metastable aluminum-based composites and typical binders[J]. Chinese Journal of Energetic Materials, 2021, 29(10): 914-919.
[15]刘虎, 强洪夫, 王广. 凝胶推进剂射流撞击雾化研究进展[J]. 含能材料, 2015, 23(7): 697-708.
LIU H, QIANG H F, WANG G. Review on jet impingement atomization of gelled propellant[J]. Chinese Journal of Energetic Materials, 2015, 23(7): 697-708.
[16]张蒙正, 陈炜, 杨伟东, 等. 撞击式喷嘴凝胶推进剂雾化及表征[J]. 推进技术, 2009, 30(1): 46-51.
ZHANG M Z, CHEN W, YANG W D, et al. Atomization and characteristics of gelled propellant with impinging injector[J]. Journal of Propulsion Technology, 2009, 30(1): 46-51.
[17]WHITBY C P, KREBSZ M, BOOTY S J. Understanding the role of hydrogen bonding in the aggregation of fumed silica particles in triglyceride solvents[J]. Journal of Colloid & Interface Science, 2018, 527: 1-9.
[18]YASIN S, HUSSAIN M, ZHENG Q, et al. Large amplitude oscillatory rheology of silica and cellulose nanocrystals filled natural rubber compounds[J]. Journal of Colloid & Interface Science, 2021, 588: 602-610.
[19]LIN S F, BRODKEY R S. Rheological properties of slurry fuels[J]. Journal of Rheology, 1985, 29(2): 147-175.
[20]MOHSAN H, ALIBEK I, SALAH U D K, et al. The effects of zero and high shear rates viscosities on the transportation of heat and mass in boundary layer regions: a non-newtonian fluid with carreau model[J]. Journal of Molecular Liquids, 2020, 317: 113991.
[21]华幼卿, 金日光. 高分子物理[M]. 5版. 北京: 化学工业出版社, 2019.
HUA Y Q, JIN R G. Polymer physics[M]. 5th ed. Beijing: Chemical Industry Press, 2019.
[22]刘继展, 白欣欣, 李萍萍. 番茄果实蠕变特性表征的Burger's修正模型[J]. 农业工程学报, 2013, 29(9): 249-255.
LIU J Z, BAI X X, LI P P. Burger's modified model for characterization of creep characteristics of tomato fruit[J]. Journal of Agricultural Engineering, 2013, 29(9): 249-255.
[23]MARUNAKA R, KAWAGUCHI M. Rheological behavior of hydrophobic fumed silica suspensions in different alkanes[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 456(1): 75-82.
[24]JOHN J, NANDAGOPALAN P, BAEK S W, et al. Rheology of solidlike ethanol fuel for hybrid rockets: effect of type and concentration of gellants[J]. Fuel, 2017, 209: 96-108.
[25]WU H, MORBIDELLI M. A model relating structure of colloidal gels to their elastic properties[J]. Langmuir, 2001, 17(4): 1030-1036.

相似文献/References:

[1]杨泽宇①,李建①,何桂标①,等.基于流变特性的含铝凝胶燃料制备工艺研究[J].爆破器材,2023,52(03):1.[doi:10.3969/j.issn.1001-8352.2023.03.001]
 YANG Zeyu,LI Jian,HE Guibiao,et al.Preparation Process of Aluminium-Containing Gel Fuel Based on Rheological Properties[J].EXPLOSIVE MATERIALS,2023,52(02):1.[doi:10.3969/j.issn.1001-8352.2023.03.001]

备注/Memo

备注/Memo:
收稿日期:2021-11-08
第一作者:叶纬东(1995-),男,硕士研究生,主要从事FAE燃料性能研究。E-mail:Ye_weii@163.com
通信作者:马含(1988-),男,博士,讲师,主要从事FAE燃料设计及应用研究。E-mail:hawkinsma1218@gmail.com
更新日期/Last Update: 2022-04-06