[1]杨泽宇①,李建①,何桂标①,等.基于流变特性的含铝凝胶燃料制备工艺研究[J].爆破器材,2023,52(03):1-9,15.[doi:10.3969/j.issn.1001-8352.2023.03.001]
 YANG Zeyu,LI Jian,HE Guibiao,et al.Preparation Process of Aluminium-Containing Gel Fuel Based on Rheological Properties[J].EXPLOSIVE MATERIALS,2023,52(03):1-9,15.[doi:10.3969/j.issn.1001-8352.2023.03.001]
点击复制

基于流变特性的含铝凝胶燃料制备工艺研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
52
期数:
2023年03
页码:
1-9,15
栏目:
基础理论
出版日期:
2023-06-06

文章信息/Info

Title:
Preparation Process of Aluminium-Containing Gel Fuel Based on Rheological Properties
文章编号:
5770
作者:
杨泽宇李建何桂标张雪松马含王伯良
①南京理工大学化学与化工学院(江苏南京,210094)
②山西江阳化工有限公司(山西太原,030041)
Author(s):
YANG Zeyu LI Jian HE Guibiao ZHANG Xuesong MA Han WANG Boliang
①School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②Shanxi Jiangyang Chemical Co., Ltd. (Shanxi Taiyuan, 030041)
关键词:
凝胶燃料制备工艺应变扫描剪切历史
Keywords:
gel fuel preparation process strain sweep shear history
分类号:
TQ560.7;O373
DOI:
10.3969/j.issn.1001-8352.2023.03.001
文献标志码:
A
摘要:
为提升液固燃料的结构稳定性,以无机纳米颗粒为凝胶剂制备了环氧丙烷基凝胶基质,在基质中引入微米铝粉,得到含铝凝胶燃料。通过测定凝胶基质的弹性模量G0和线性区范围γc,分析了超声和热处理对纳米颗粒成胶的影响。针对不同含铝量的凝胶燃料,在不同剪切速率(0.1~2 000.0 s-1)下,进行了旋转剪切测试,并研究了剪切历史对燃料流动曲线的影响。结果表明,超声和加热对纳米颗粒的成胶效果皆有促进作用。低剪切速率(γ<100 s-1)下,剪切历史会使得凝胶体系黏度增高;超过100 s-1后,黏度较无剪切历史的样品低。流动曲线显示,含铝凝胶燃料在100 s-1附近出现增稠现象,而更高的剪切速率直接导致凝胶结构在短时间内出现不可逆破坏,致使黏度迅速降低。
Abstract:
In order to improve the structural stability of liquid-solid fuel, tetrahydrofuran-based gel matrix was prepared using inorganic nanoparticles as gel agent, and aluminum-containing gel fuel was obtained by filling micron aluminum powder into the matrix. The effects of ultrasound and heat treatment on the gelation of nanoparticles were analyzed by measuring the elastic modulus G0 and the linear region γc of the gel matrix. Rotating shear tests at different shear rates (0.1-2 000.0 s-1 ) were carried out for gel fuels with different aluminum contents, and the influence of shear history on the fuel flow curve was studied. The results show that ultrasound and heating can promote the gelling outcome of nanoparticles. Under low shear conditions (γ·<100 s-1), the shear history will increase the viscosity of the gel system, and after 100 s-1, the viscosity will be lower than that of the sample without shear history. It shows that the aluminum-containing gel fuel thickens around 100 s-1?in the flow curves, and the higher shear conditions directly lead to the irreversible destruction of the gel structure in a short time, resulting in a rapid decrease in viscosity.

参考文献/References:

[1]SANTOS P H S, CARIGNANO M A, CAMPANELLA O H. Qualitative study of thixotropy in gelled hydrocarbon fuels [J]. Engineering Letters, 2011, 19(1): 13-19.
[2]CHEN A Q, GUAN X D, LI X M, et al. Preparation and characterization of metalized JP-10 gel propellants with excellent thixotropic performance[J]. Propellants, Explosives, Pyrotechnics, 2017, 42 (9): 1007-1013.
[3]XIU T F, ZHI X M, ZHANG X W, et al. Ignition and combustion performances of high-energy-density jet fuels catalyzed by Pt and Pd nanoparticles[J]. Energy & Fuels, 2018, 32 (2): 2163-2169.
[4]XUE K, CAO J W, PAN L, et al. Review on design, preparation and performance characterization of gelled fuels for advanced propulsion[J]. Frontiers of Chemical Science Engineering, 2021, 16(6): 819-837.
[5]叶纬东, 乔治军, 李嘉颢, 等. 含铝凝胶燃料的流变特性研究[J]. 爆破器材, 2022, 51 (2): 17-25.
YE W D, QIAO Z J, LI J H, et al. Rheological properties of aluminium-containing gel fuel[J]. Explosive Materials, 2022, 51 (2): 17-25.
[6]LIU Y, ZHANG H Z, PAN L, et al. High-energydensity gelled fuels with high stability and shear thinning performance [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 99-109.
[7]ZHANG X W, PAN L, WANG L, et al. Review on synthesis and properties of high-energy-density liquid fuels: hydrocarbons, nanofluids and energetic ionic liquids[J]. Chemical Engineering Science, 2018, 180: 95-125.
[8]CAO Q L, LIAO W H, WU W T, et al. Combustion characteristics of inorganic kerosene gel droplet with fumed silica as gellant[J]. Experimental Thermal and Fluid Science, 2019, 103: 377-384.
[9]JOHN J, NANDAGOPALAN P, BAEK S W, et al. Rheology of solid-like ethanol fuel for hybrid rockets: effect of type and concentration of gellants [J]. Fuel, 2017, 209: 96-108.
[10]JOHN J, ARDHIANTO K, NANDAGOPALAN P, et al. Thermoreversible gelation and self-assembly behavior of dibenzylidene sorbitol in ternary solvent mixtures[J]. Colloid and Polymer Science, 2019, 297(4): 493-502.
[11]WANG Y, WU X J, YANG W, et al. Aggregate of nanoparticles: rheological and mechanical properties[J]. Nanoscale research letters, 2011, 6(1): 3-6.
[12]ARNOLD R, SANTOS P H S, CAMPANELLA O H, et al. Rheological and thermal behavior of gelled hydrocarbon fuels[J]. Journal of Propulsion & Power, 2011, 27 (1): 151-161.
[13]鄂秀天凤, 张磊, 谢君健, 等. 添加纳米铝的高密度悬浮燃料点火性能[J]. 含能材料, 2018, 26(4): 290-296.
E X T F,ZHANG L,XIE J J,et al. Ignition per formance of high-density suspension fuel of adding Al NPs [J]. Chinese Journal of Energetic Materials, 2018, 26 (4): 290-296.
[14]曹锦文, 潘伦, 张香文, 等. 含纳米铝颗粒的JP-10凝胶燃料理化及流变性能[J]. 含能材料, 2020, 28 (5): 382-390.
CAO J W, PAN L, ZHANG X W,et al. Physicochemical and rheological properties of Al/JP-10 gelled fuel[J]. Chinese Journal of Energetic Materials, 2020, 28 (5): 382-390.
[15]WU X J, WANG Y, YANG W, et al. A rheological study on temperature dependent microstructural changes of fumed silica gels in dodecane[J]. Soft Matter, 2012, 8(40): 10457-10463.
[16]GUO Y, YU W, XU Y Z, et al. Liquidtosolid transition of concentrated suspensions under complex transient shear histories [J]. Physical Review E, 2009, 80 (6): 061404.
[17]郑重. 气相二氧化硅/极性低聚物纳米复合材料的界面调控与流变行为研究[D]. 杭州: 浙江大学, 2016.
ZHENG Z. Adjustable interfacial structure rheology of fumed silica/polar oligomer nanocomposites [D]. Hangzhou: Zhejiang University, 2016.
[18]HASSAN M, ISSAKHOV A, UD K, et al. The effects of zero and high shear rates viscosities on the transportation of heat and mass in boundary layer regions: a non-Newtonian fluid with Carreau model [J]. Journal of Molecular Liquids, 2020, 317: 113991.

相似文献/References:

[1]陆明,张汉平,甘德淮,等.液混式膨化硝铵炸药生产技术研究[J].爆破器材,2009,38(06):14.
 LU Ming,ZHANG Hanping,GAN Dehuai,et al.Study on the Productive Technology of Expanded Ammonia Nitrate Explosive with Liquid Mixing[J].EXPLOSIVE MATERIALS,2009,38(03):14.
[2]陆明,张汉平,甘德淮,等.液混式膨化硝铵炸药生产安全性研究[J].爆破器材,2009,38(04):12.
 LU Ming,ZHANG Hanping,GAN Dehuai,et al.Study on the Productive Safety of Expanded Ammonia Nitrate Explosive with Liquid Mixing[J].EXPLOSIVE MATERIALS,2009,38(03):12.
[3]李玉清,宋日,李渊,等.露天矿高台阶抛掷爆破炸药配方设计及现场制备[J].爆破器材,2013,42(03):37.[doi:10.3969/j.issn.1001-8352.2013.03.009]
 LI Yuqing,SONG Ri,LI Yuan,et al.Design and Onsite Preparation of Explosives Used for High Step Casting Blast in Open-pit Mine[J].EXPLOSIVE MATERIALS,2013,42(03):37.[doi:10.3969/j.issn.1001-8352.2013.03.009]
[4]刘瑶,王建华,刘玉存,等.薄片橡胶炸药的制备及性能研究[J].爆破器材,2014,43(02):24.[doi:10.3969/j.issn.1001-8352.2014.02.006]
 LIU Yao,WANG Jianhua,LIU Yucun,et al.Preparation and Performance Study of Thin Rubber Explosive[J].EXPLOSIVE MATERIALS,2014,43(03):24.[doi:10.3969/j.issn.1001-8352.2014.02.006]
[5]叶纬东①,乔治军②③,李嘉颢①,等.含铝凝胶燃料的流变特性研究[J].爆破器材,2022,51(02):17.[doi:doi:10.3969/j.issn.1001-8352.2022.02.003]
 YE Weidong,QIAO Zhijun,LI Jiahao,et al.Rheological Properties of Aluminium-Containing Gel Fuel[J].EXPLOSIVE MATERIALS,2022,51(03):17.[doi:doi:10.3969/j.issn.1001-8352.2022.02.003]

备注/Memo

备注/Memo:
收稿日期:2022-10-12
第一作者:杨泽宇(1998-),男,硕士研究生,主要从事FAE燃料制备工艺研究。E-mail:yzy@njust.edu.cn
通信作者:王伯良(1964-),男,教授,博导,主要从事混合炸药配方设计及其应用技术研究。E-mail:boliangwang@njust.edu.cn
更新日期/Last Update: 2023-06-02