[1]程秋霞,薛小慧,李佳佳,等.一种用于固体推进剂样品无机组分含量测定的绿色预处理技术[J].爆破器材,2025,54(02):51-57.[doi:10.3969/j.issn.1001-8352.2025.02.007]
 CHENG Qiuxia,XUE Xiaohui,LI Jiajia,et al.A Green Pretreatment Technique for Determination of the Content of Inorganic Components in Solid Propellants[J].EXPLOSIVE MATERIALS,2025,54(02):51-57.[doi:10.3969/j.issn.1001-8352.2025.02.007]
点击复制

一种用于固体推进剂样品无机组分含量测定的绿色预处理技术()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
54
期数:
2025年02
页码:
51-57
栏目:
爆炸材料
出版日期:
2025-04-07

文章信息/Info

Title:
A Green Pretreatment Technique for Determination of the Content of Inorganic Components in Solid Propellants
文章编号:
5903
作者:
程秋霞薛小慧李佳佳张慧廉建彪
山西北方兴安化学工业有限公司(山西太原,030008)
Author(s):
CHENG Qiuxia XUE Xiaohui LI Jiajia ZHANG Hui LIAN Jianbiao
Shanxi North Xing’an Chemical Industry Co., Ltd. (Shanxi Taiyuan, 030008)
关键词:
固体推进剂酸烟红外加热硝化绿色预处理
Keywords:
solid propellant acid fume infrared heating nitration green pretreatment
分类号:
TQ560.7
DOI:
10.3969/j.issn.1001-8352.2025.02.007
文献标志码:
A
摘要:
利用密闭红外加热消解技术与化学法吸收酸烟相结合的绿色预处理方法,对需测定无机组分含量的固体推进剂样品进行了湿法分解预处理,并吸收反应产生的有害酸烟。结果表明:红外加热硝化时,以电炉 10%功率预热5 min后,以30%功率加热30 min,再以70%功率持续加热40 min,测得推进剂中燃烧催化剂的含量符合要求;当以电炉10%功率预热5 min后,以30%功率加热30 min,再以50%功率持续加热60 min,测得推进剂中炭黑的含量符合要求;用质量分数为30%的碱液进行两级吸收,实现了酸烟的零排放。该方法操作简单,准确度和精密度高,可用于固体推进剂无机组分含量测定过程中样品的预处理。
Abstract:
A green pretreatment method combining sealed infrared heating digestion technology with chemical absorption of acid fume was used to wet decompose and pretreat solid propellant samples that require determination of inorganic component content, and absorb harmful acid fume generated by the reaction. The results show that during infrared heating nitration, the content of combustion catalyst in the propellant meets the requirements by preheating for 5 min at 10% power of the electric furnace, heating for 30 min at 30% power, and then continuously heating for 40 min at 70% power. After preheating with an electric furnace at 10% power for 5 min, heating at 30% power for 30 min, and then continuously heating at 50% power for 60 min, the content of carbon black in the propellant meets the requirements. Zero emission of acid fume was achieved through two-stage absorption using alkaline solution with a mass fraction of 30%. The method is easy to operate, with high accuracy and precision, and can be used for sample pretreatment in the determination of inorganic component content in solid propellants.

参考文献/References:

[1]卢业友, 杨芬, 闵欣. 化学分析中试验样品的预处理技术研究进展[J]. 广州化工, 2016, 44(14): 30-32.
LU Y Y, YANG F, MIN X. Research progress on pretreatment technology of test sample in chemical analysis [J]. Guangzhou Chemical Industry, 2016, 44(14): 30-32.
[2]寇宗燕. 分析样品预处理技术的动态和发展趋势[J]. 甘肃教育学院学报(自然科学版), 1993(1): 58-70.
[3]吕勇, 王莹. ICPAES测微量元素预处理样品方法的总结[J]. 辽宁化工, 2016, 45(11): 1462-1464.
Lǔ Y, WANG Y. Summary of sample pretreatment methods for determining trace elements by ICP-AES [J]. Liaoning Chemical Industry, 2016, 45(11): 1462-1464.
[4]中国兵器工业集团公司. 火药试验方法: GJB 770B—2005 [S]. 北京: 国防科工委军标发行部, 2005.
China North Industries Group Co., Ltd. Test methods of propellants: GJB 770B—2005 [S]. Beijing: Armament Standard Press of Commission of Science Technology and Industry for National Defence, 2005.
[5]于新杰, 杨毅, 李丽霞. 纳米CuO在固体推进剂中分散性的表征研究[C]//江苏省颗粒学会2010年学术年会暨江苏省应用化学、生物颗粒学与粉体领域学术研讨会论文集. 泰州, 2010: 171-177.
YU X J, YANG Y, LI L X. Characterization of the nano-CuO dispersibility in the solid propellant [C]// Proceedings of the 2010 Annual Meeting of Jiangsu Particle Society and Jiangsu Provincial Symposium on Applied Chemistry, Bio-Particle Science and Powder Field. Taizhou, 2010: 171-177.
[6]刘月娥. 纳米CuO在复合推进剂中的分散性研究[D]. 南京: 南京理工大学, 2009.
[7]刘红妮, 罗红艳, 胡玲, 等. 原子吸收法测定某推进剂中铜含量的不确定度评定[J]. 化学分析计量, 2013, 22(4): 87-89.
LIU H N, LUO H Y, HU L, et al. Evaluation of uncertainty of the determination of copper content in propellant by atomic absorption spectrophotometry [J]. Chemical analysis and meterage, 2013, 22(4): 87-89.
[8]雷蓓, 张敏. 微波消解火焰原子吸收光谱法测定某推进剂中Pb、Cu和Ca元素含量[J]. 含能材料, 2006, 14(2): 99-101.
LEI P, ZHANG M. Determination of lead, copper and calcium in propellant by flame atomic absorption spectrometry with microwave assisted digestion [J]. Chinese Journal of Energetic Materials, 2006, 14(2): 99-101.
[9]曹晔, 李志鲲, 秘秀丽, 等. 石墨炉原子吸收法测定肼类推进剂中九种金属杂质[J]. 分析试验室, 2002, 21(6): 18-20.
CAO Y, LI Z K, MI X L, et al. Determination of nine metal impurity in the propellant of hydrazine compounds by graphite furnace atomic absorption spectrometry [J]. Chinese Journal of Analysis Laboratory, 2002, 21(6): 18-20.
[10]宋小云. 凯氏法测定土壤全氮的方法改进[J]. 环境与发展, 2019, 31(8): 120-121.
SONG X Y. Improvement of the method for determination of total nitrogen in soil by Kjeldahl method [J]. Environment and Development, 2019, 31(8): 120-121.
[11]王宝童, 张勇杰. K9840自动凯氏定氮仪测定生物膜蛋白质含量[J]. 当代化工, 2022, 51(7): 1756-1760.
WANG B T, ZHANG Y J. Determination of protein content in biological membrane by K9840 automatic Kjeldahl nitrogen determination apparatus [J]. Contemporary Chemical Industry, 2022, 51(7): 1756-1760.
[12]李朝英, 郑路. 2种消解仪不同消解条件对凯氏定氮法测定结果的影响[J]. 西北农业学报, 2019, 28(9): 1485-1491.
LI Z Y, ZHENG L. Effect of different digestion conditions of two kinds of digestion instruments on the determination results of Kjeldahl method [J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2019, 28(9): 1485-1491.
[13]颜常盛. 凯氏定氮法测定豆类粗蛋白含量的消解条件探究[J]. 世界核地质科学, 2020, 37(2): 131-135.
YAN C S. Study on the digestion conditions of crude protein content in legumes by Kay type nitrogen [J]. World Nuclear Geoscience, 2020, 37(2): 131-135.
[14]李工一, 秦伟, 葛世名. 红外加热30年[J]. 红外技术, 2003, 25(6): 73.
[15]谷励. 红外辐射加热技术优化应用的研究[C]//第十三届全国红外加热暨红外医学发展研讨会论文及论文摘要集. 北京: 科学出版社, 2011: 34-37.
[16]谢连宏. 食品中铅的红外消解-氢化物发生-原子吸收光谱测定法[J]. 环境与健康杂志, 2007, 24 (11): 919-920.
XIE L H. Determination of lead in food by infrared digestion-hydride generation-atomic absorption spectrometry [J]. Journal of Environment and Health, 2007, 24 (11): 919-920.
[17]魏松丽, 黄纪念, 张丽霞, 等. 基于主成分分析的红外预处理温度对花生油香气成分的影响[J]. 食品科技, 2022, 47(12): 149-155.
WEI S L, HUANG J N, ZHANG L X, et al. Effect of infrared pretreatment temperature on the aroma composition of peanut oil based on principal component analysis [J]. Food Science and Technology, 2022, 47(12): 149-155.
[18]马勤, 陆嘉星, 张贵荣. 原子吸收光谱的样品前处理方法进展[J]. 化学世界, 2007, 48(7): 431-436.
MA Q, LU J X, ZHANG G R. The development of sample preparation method in atomic absorption spectrometry [J]. Chemical World, 2007, 48(7): 431-436.
[19]张皋. 火炸药理化分析[M]. 北京: 中国兵器工业集团公司质量安全部, 2005.
ZHANG G. Physical and chemical analysis of pyrotechnics [M]. Beijing: Quality and Safety Department of China North Industry Group Co.,Ltd., 2005.

相似文献/References:

[1]樊凯旋,彭旭,任家帆,等.固体火箭发动机结构意外爆炸的数值模拟与风险评估[J].爆破器材,2020,49(04):58.[doi:10.3969/j.issn.1001-8352.2020.04.010]
 FAN Kaixuan,PENG Xu,REN Jiafan,et al.Numerical Simulation and Risk Assessment of Accidental Explosion of Solid Rocket Engine Structure[J].EXPLOSIVE MATERIALS,2020,49(02):58.[doi:10.3969/j.issn.1001-8352.2020.04.010]
[2]杨巍璐,宋秀铎,陈旭,等.SEBS与常用单质炸药的相容性研究[J].爆破器材,2024,53(04):28.[doi:10.3969/j.issn.1001-8352.2024.04.005]
 YANG Weilu,SONG Xiuduo,CHEN Xu,et al.Compatibility between SEBS and Commonly Used Single Compound Explosives[J].EXPLOSIVE MATERIALS,2024,53(02):28.[doi:10.3969/j.issn.1001-8352.2024.04.005]

备注/Memo

备注/Memo:
收稿日期:2023-11-26
第一作者:程秋霞(1981—),女,工程师,主要从事发射药及固体推进剂的研究。E-mail:48219162@qq.com
更新日期/Last Update: 2025-04-07