[1]赵东,屈可朋,董泽霖.凝聚相炸药损伤-点火特性的研究进展[J].爆破器材,2024,53(03):1-9,16.[doi:10.3969/j.issn.1001-8352.2024.03.001]
 ZHAO Dong,QU Kepeng,DONG Zelin.Research Progress on Damage and Ignition Characteristics of Condensed Phase Explosives[J].EXPLOSIVE MATERIALS,2024,53(03):1-9,16.[doi:10.3969/j.issn.1001-8352.2024.03.001]
点击复制

凝聚相炸药损伤-点火特性的研究进展()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年03
页码:
1-9,16
栏目:
基础理论
出版日期:
2024-06-04

文章信息/Info

Title:
Research Progress on Damage and Ignition Characteristics of Condensed Phase Explosives
文章编号:
5871
作者:
赵东屈可朋董泽霖
西安近代化学研究所(陕西西安,710065)
Author(s):
ZHAO Dong QU Kepeng DONG Zelin
Xi’an Modern Chemistry Research Institute (Shaanxi Xi’an, 710065)
关键词:
炸药损伤模拟实验损伤观测热点点火特性
Keywords:
explosive damage simulation experiment damage observation hot spot ignition characteristic
分类号:
TQ560.7; O389
DOI:
10.3969/j.issn.1001-8352.2024.03.001
文献标志码:
A
摘要:
高能炸药是各类武器弹药毁伤的能量之源。研究高能炸药(凝聚相炸药)的损伤和点火特性对武器弹药的安全性具有重要意义。从成型工艺、损伤实验模拟、损伤的观测与表征、损伤与点火相关性等4个方面介绍了凝聚相炸药损伤-点火特性的研究进展。首先,探讨了压装、浇注、熔铸等成型工艺对装药初始损伤的影响;其次,对凝聚相炸药在使用过程中损伤的产生、实验模拟和观测与表征方法进行总结;针对典型损伤类型分析了炸药的损伤-热点-点火过程;最后,基于研究现状分析,提出凝聚相炸药损伤-点火特性研究未来的发展趋势和面临的挑战
Abstract:
High energy explosives are the source of energy for the destruction of various weapons and ammunition. Study on the damage and ignition characteristics of high-energy explosives (condensed phase explosives) is of great significance for the safety of weapons and ammunition. The research progress on the damage and ignition characteristics of condensed phase explosives was introduced from four aspects: molding process, experimental simulation of damage, observation and characterization of damage, and damage-ignition correlation. Firstly, the influence of molding processes such as press-fitting, pouring, and melting and casting on the initial damage of the charge was explored. Secondly, the generation of damage, experimental simulation, observation and characterization methods of damage during the use of condensed phase explosives were summarized. Furthermore, the damage-hot spot-ignition process of explosives was analyzed in terms of the typical types of damage. Finally, based on the analysis of the current research status, the future development trends and challenges of damage-ignition characteristics of condensed phase explosives were proposed.

参考文献/References:

[1]屈可朋, 陈鹏, 李亮亮, 等. 含能装药损伤研究进展[J]. 飞航导弹, 2018(11): 92-96.
QU K P, CHEN P, LI L L, et al. Research progress on damage of energetic charge [J]. Aerodynamic Missile Journal, 2018(11): 92-96.
[2]周忠彬, 高金霞, 刘龑龙, 等. 成型温度对PBX药柱力学性能及破坏形式的影响研究[J]. 火工品, 2022(6): 56-59.
ZHOU Z B, GAO J X, LIU Y L, et al. Effect of molding temperature on mechanical properties and failure modes of PBX grain [J]. Initiators & Pyrotechnics, 2022(6): 56-59.
[3]梁华琼, 雍炼, 唐常良, 等. RDX为基的PBX炸药压制过程损伤形成研究[J]. 含能材料, 2009, 17(6): 713-716.
LIANG H Q, YONG L, TANG C L, et al. Pressing damage of RDX-based polymer bonded explosive [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 713-716.
[4]王秋雨, 孙家利, 卢凤生, 等. 高能炸药分步压装药工艺过程控制及标准研究[J]. 新技术新工艺, 2020(1): 71-74.
WANG Q Y, SUN J L, LU F S, et al. Research on the craft process control and standard of high explosive step press charging [J]. New Technology & New Process, 2020(1): 71-74.
[5]SANHEY W, DUBOIS C, LAROCHE I. Numerical modeling of the cooling cycle and associated thermal stresses in a melt explosive charge [J]. AIChE Journal, 2016, 62(10): 3797-3811.
[6]胡菲. 熔铸炸药固化参数全时域测试及内部缺陷成因[D]. 太原: 中北大学, 2022.
HU F. Full temporal domain test of solidification parameters on the melt-cast explosives and cause of internal defects [D]. Taiyuan: North University of China, 2022.
[7]SUN D W, GARIMELLA S V. Numerical and experimental investigation of solidification shrinkage [J]. Numerical Heat Transfer, Part A: Applications, 2007, 52(2): 145-162.
[8]MENG J J, ZHOU L, ZHANG X R. Effect of pressure of the casting vessel on the solidification characteristics of a DNAN/RDX melt-cast explosive [J]. Journal of Energetic Materials, 2017, 35(4): 385-396.
[9]KUMMAR A S, RAO V D. Modeling of cooling and solidification of TNT based cast high explosive charges [J]. Defence Science Journal, 2014, 64(4): 339-343.
[10]杨治林, 李昂, 余瑶, 等. 战斗部顺序凝固装药过程数值模拟研究[J]. 兵器装备工程学报, 2022, 43(9): 193-200.
YANG Z L, LI A, YU Y, et al. Research on numerical simulation of sequential solidification charge process of warhead [J]. Journal of Ordnance Equipment Engineering, 2022, 43(9): 193-200.
[11]金大勇, 王红星, 牛国涛, 等. 正交试验法研究DNAN基熔铸炸药的装药工艺[J]. 含能材料, 2014, 22 (6): 804-807.
JIN D Y, WANG H X, NIU G T, et al. Charge process of DNAN based melt cast explosive by orthogonal experiments[J]. Chinese Journal of Energetic Materials, 2014, 22(6): 804-807.
[12]MUDRYY R, JIA S, NASTAC L. Recent advances on the solidification processing of cast energetic materials [M]//TIRYAKLOGLU M, CAMPBELL J, BYCZYNSKI G. Shape Casting: 5th International Symposium 2014. Springer, 2014: 67-74.
[13]CHEN S X, QIAN H, LIU B X, et al. The effect of highquality RDX on the safety and mechanical properties of pressed PBX [J]. Materials, 2022, 15(3): 1185.
[14]REYNOLDS J G, HSU P C, HUST G A, et al. Hot spot formation in mock materials in impact sensitivity testing by drop hammer [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(11): 1303-1308.
[15]李俊玲, 王硕, 傅华, 等. SHPB实验加载方式对PBX炸药力学响应的影响研究[J]. 含能材料, 2019, 27(10): 824-829.
LI J L, WANG S, FU H, et al. Investigation into the influences of SHPB loading ways on the mechanical response of PBX [J]. Chinese Journal of Energetic Materials, 2019, 27(10): 824-829.
[16] 陈鹏, 屈可朋, 李亮亮, 等. PBX炸药剪切流动点火性能的实验研究[J]. 火炸药学报, 2020, 43(1): 69-73, 80.
CHEN P, QU K P, LI L L, et al. Experimental study on shear-flow ignition performance of PBX explosive [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 69-73, 80.
[17]焦纲领, 陈鹏万, 王志浩, 等. 浇注CL20基混合炸药的高速破片撞击安全性[J]. 火炸药学报, 2023, 46(4): 321-326.
JIAO G L, CHEN P W, WANG Z H, et al. The safety of cast CL-20-based PBX under high-velocity fragment impact [J]. Chinese Journal of Explosives & Propellants, 2023, 46(4): 321-326.
[18]YUAN H W, CHEN Y L, TANG W, et al. Study on applicability of phase field method in quasi-static fracture behavior simulation of PBX components [J]. Journal of Physics: Conference Series, 2023, 2478: 022003.
[19]龚芹. 基于三维细观结构的PBX炸药损伤机理研究[D]. 重庆: 重庆大学, 2021.
GONG Q. Study on damage mechanism of PBX based on threedimensional meso-structure [D]. Chongqing: Chongqing University, 2021.
[20]杨存丰, 田勇, 张伟斌, 等. 基于X射线显微CT的PBX热冲击损伤特征[J]. 含能材料, 2022, 30(9): 959-965.
YANG C F, TIAN Y, ZHANG W B, et al. Thermal shock damage characteristics of polymer bonded explosive based on X-ray micro-computed tomography [J]. Chinese Journal of Energetic Materials, 2022, 30(9): 959-965.
[21]ZI P D, CHEN J, ZHANG R, et al. Double shock experiments on PBX explosive JOB-9003 [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(7): 784-790.
[22]李亮亮, 孙兴昀, 付改侠, 等. 两次脉冲加载条件下炸药装药的安全性实验技术[J]. 爆破器材, 2022, 51(2): 31-34, 41.
LI L L, SUN X Y, FU G X, et al. Experimental technology of safety of explosive charge under two pulse loading conditions [J]. Explosive Materials, 2022, 51(2): 31-34, 41.
[23]聂少云, 薛鹏伊, 代晓淦. 模拟多层穿靶过程装药安全性评价方法[J]. 火炸药学报, 2020, 43(5): 537-542.
NIE S Y, XUE P Y, DAI X G. Method of evaluating the safety of charging in a multi-layer penetration process [J]. Chinese Journal of Explosives & Propellants, 2020, 43(5): 537-542.
[24]戴开达, 陈昂, 陈鹏万, 等. 高聚物黏结炸药模拟材料冲剪实验下的动态变形破坏研究[J]. 北京理工大学学报, 2015, 35(增刊2): 6-9.
DAI K D, CHEN A, CHEN P W, et al. Dynamic deformation and fracture of polymer bonded explosive simulantunder shear and impact test [J]. Transactions of Beijing Institute of Technology, 2015, 35(Suppl.2): 6-9.
[25]胡雪垚, 屈可朋, 张广华, 等. 一种子弹撞击炸药装药压缩剪切试验装置及设计方法: CN115876606A [P]. 2023-03-31.
[26]DAI X G, WEN Y S, WEN M P, et al. Projectile impact ignition and reaction violent mechanism for HMX-based polymer bonded explosives at high temperature [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(7): 799-808.
[27]屈可朋, 李亮亮, 肖玮. 高低温循环及对称冲击耦合加载下炸药的安全性研究[J]. 爆破器材, 2019, 48(4): 43-46, 53.
QU K P, LI L L, XIAO W. Safety of explosive under high and low temperature cycle and coupling loading of symmetrical colliding [J]. Explosive Materials, 2019, 48(4): 43-46, 53.
[28]ROTARIU T, MOLDOVAN A E, TOADER G, et al. “Green” PBX formulations based on high explosives (RDX and HMX) and water-soluble pH-sensitive polymeric binders [J]. Polymers, 2023, 15(7): 1790.
[29]HIKAL W M, BHATTACHARIA S K, VAUGHN M W, et al. Sublimation and diffusion kinetics of 2,4,6-trinitrotoluene (TNT) single crystals by atomic force microscopy (AFM) [J]. Molecules, 2022, 27(17): 5482.
[30]YEAGER J D, MANNER V W, STULL J A, et al. Importance of microstructural features in mechanical response of castcured HMX formulations [J].AIP Conference Proceedings, 2018, 1979 (1): 070033.
[31]YEAGER J D, KUETTNER L A, DUQUE A L, et al. Microcomputed X-Ray tomographic imaging and image processing for microstructural characterization of explosives [J]. Materials, 2020, 13(20): 4517.
[32]许礼吉, 段卓平, 白志玲, 等. RDX基PBX炸药热损伤演化行为的量化表征[J]. 兵工学报, 2023, 44 (7): 2002-2013.
XU L J, DUAN Z P, BAI Z L, et al. Quantitative characterization of thermal damage evolution of RDX-based PBX explosives [J]. Acta Armamentarii, 2023, 44 (7): 2002-2013.
[33]邱芷葳. 面向PBX工程应用的声发射损伤监测方法研究[D]. 绵阳:中国工程物理研究院, 2020.
QIU Z W. Research on acoustic emission damage monitoring method for PBX engineering applications[D]. Mianyang: China Academy of Engineering Physics, 2020.
[34]WANG Y, CHARBAL A, DUFOUR J E, et al. Hybrid multiview correlation for measuring and monitoring thermomechanical fatigue test [J]. Experimental Mechanics, 2020, 60(1): 13-33.
[35]周忠彬, 吕永柱, 张博, 等. 不同撞击速度下压装炸药损伤规律研究[J]. 兵器装备工程学报, 2023, 44(8): 8-12, 80.
ZHOU Z B, Lǔ Y Z, ZHANG B, et al. Study on damage law of pressed explosives under different impact velocities [J]. Journal of Ordnance Equipment Engineering, 2023, 44(8): 8-12, 80.
[36]ZHOU Z B, CHEN P W, HUANG F L, et al. Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method [J]. Optics and Lasers in Engineering, 2011, 49(3): 366-370.
[37]王延珺, 邹翔, 潘兵, 等. 基于数字体图像相关法的TATB基PBX材料内部变形测量[J]. 含能材料, 2022, 30(12): 1272-1281.
WANG Y J, ZOU X, PAN B, et al. 3D deformation measurement in TATB based PBX based on digital volume correlation with μ?computed tomography [J]. Chinese Journal of Energetic Materials, 2022, 30(12): 1272-1281.
[38]BOWDEN F P, YOFFE A D,HUDSON G E. Initiation and growth of explosion in liquids and solids [J].American Journal of Physics, 1952, 20(4): 250-251.
[39]尚海林, 赵锋, 王文强, 等. 冲击作用下炸药热点形成的3维离散元模拟[J]. 爆炸与冲击, 2010, 30(2): 131-137.
SHANG H L, ZHAO F, WNAG W Q, et al. Threedimensional discrete element simulation of hot spots in explosives under shock loading [J]. Explosion and Shock Waves, 2010, 30(2): 131-137.
[40]白志鑫, 蒋城露, 刘福生, 等. 含能材料“热点”点火研究进展[J]. 火炸药学报, 2023, 46(4): 285-298.
BAI Z X, JIANG C L, LIU F S, et al. Progresses of “hot spot” ignition in energetic materials [J]. Chinese Journal of Explosives & Propellants, 2023, 46(4): 285-298.
[41]章冠人, 陈大年. 凝聚炸药起爆动力学[M]. 北京: 国防工业出版社, 1991: 270.
[42]彭亚晶, 叶玉清. 含能材料起爆过程“热点”理论研究进展[J]. 化学通报, 2015, 78(8): 693-701.
PENG Y J, YE Y Q. Research progress of “hot-spot” theory in energetic materials initiation [J]. Chemistry, 2015, 78(8): 693-701.
[43]KIM K, SOHN C H. Modeling of reaction buildup process in shock porous explosives [C]//Proceedings of the 8th International Symposium on Detonation. Bethesda, MD, US: Naval Surface Warfare Center, 1985.
[44]成丽蓉, 施惠基, 贺元吉, 等. 复杂受力环境下非均质炸药孔洞塌缩热点生成机理[J]. 含能材料, 2016, 24(2): 171-176.
CHENG L R, SHI H J, HE Y J, et al. Hot-spot forming mechanism of holes collapse in heterogeneous solid explosives under complicated stress environment [J]. Chinese Journal of Energetic Materials, 2016, 24(2): 171-176.
[45]温丽晶, 段卓平, 张震宇, 等. 弹粘塑性双球壳塌缩热点反应模型[J]. 高压物理学报, 2011, 25(6): 493-500.
WEN L J, DUAN Z P, ZHANG Z Y, et al. An elastic/viscoplastic pore collapse model of double-layered hollow sphere for hot-spot ignition in shocked explosives [J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 493-500.
[46]LIU Y R, DUAN Z P, ZHANG Z Y, et al. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives [J]. Journal of Hazardous Materals, 2016, 317: 44-51.
[47]DIENES J K. Friction hotspots and propellant sensitivity [J]. MRS Online Proceedings Library, 1983, 24: 373-381.
[48]BENNETT J G, HABERMAN K S, JOHNSON J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(12): 2303-2322.
[49]CLANCY S P, JOHNSON J N, BURKETT M W. Modeling the viscoelastic and brittle fracture response of a high explosive in an eulerian hydrocode[C]//11th International Detonation Symposium. Snowmass, CO, US, 1998.
[50]成丽蓉, 施惠基, 陈荣. 战斗部装药冲击损伤及热点形成的数值分析[J]. 高压物理学报, 2013, 27(4): 575-581.
CHENG L R, SHI H J, CHEN R. Numerical simulation on the damage and hot-spot formation in warhead charge under shock [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 575-581.
[51]杨昆, 吴艳青, 金朋刚, 等. 典型压装与浇注PBX炸药缝隙挤压损伤-点火响应[J]. 含能材料, 2020, 28(10): 975-983.
YANG K, WU Y Q, JIN P G, et al. Damage-ignition simulation for typical pressed and casted PBX under crack-extruded loading [J]. Chinese Journal of Energetic Materials, 2020, 28(10): 975-983.
[52]WEI Y C, MILLER C, OLSEN D, et al. Prediction of probabilistic shock initiation thresholds of energetic materials through evolution of thermal-mechanical dissipation and reactive heating [J]. Journal of Applied Mechanics, 2021, 88(9): 091005.
[53]WALKER F E, WASLEY R J. Critical energy for shock initiation of heterogeneous explosives [J]. Explosive Stoffe, 1969, 17(1): 9-13.
[54]JAMES H R. An extension to the critical energy criterion used to predict shock initiation thresholds [J]. Propellants, Explosives, Pyrotechnics, 1996, 21(1): 8-13.
[55]WELLE E J, MOLEK C D, WIXOM R R, et al. Microstructural effects on the ignition behavior of HMX [J]. Journal of Physics: Conference Series, 2014, 500(5): 052049.
[56]KIM S, MILLER C, HORIE Y, et al. Computational prediction of probabilistic ignition threshold of pressed granular octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) under shock loading [J]. Journal of Applied Physics, 2016, 120(11): 115902.
[57]马丹竹. 低速撞击下炸药的安全性研究[D]. 北京: 北京理工大学, 2013.
MA D Z. Investigation of the safety for explosives under low velocity impact [D]. Beijing: Beijing Institute of Technology, 2013.

相似文献/References:

[1]常新岩,郁刚,徐鸿儒,等.无源自动水喷淋系统[J].爆破器材,2010,39(01):29.
 CHANG Xinyan,YU Gang,XU Hongru,et al.Automatic Water Spray System without Power[J].EXPLOSIVE MATERIALS,2010,39(03):29.
[2]解立峰,韩志伟,王海洋,等.民用炸药敏感度试验方法的研究与探讨[J].爆破器材,2011,40(02):8.
 XIE Lifeng,HAN Zhiwei,WANG Haiyang,et al.The Study of Sensitivity Testing Methods of Civil Explosives[J].EXPLOSIVE MATERIALS,2011,40(03):8.
[3]黄寅生,卢志坚.,卢光明.近年民用爆破器材专利特征分析[J].爆破器材,2009,38(05):22.
 HUANG Yinsheng,LU Zhijian.,LU Guangming.Analysis on Resent Patents of Industrial Explosive Materials[J].EXPLOSIVE MATERIALS,2009,38(03):22.
[4]常新岩,谢永言,郑永芬.工业炸药自动包装线的安全性探讨[J].爆破器材,2009,38(01):8.
 CHANG Xinyan,XIE Yongyan,ZHENG Yongfen.Discussion on Safety of Industrial Explosive Automatic Packing Line[J].EXPLOSIVE MATERIALS,2009,38(03):8.
[5]张袁斌,陈文靖,叶志文.N2O5/HNO3体系硝解三(N-乙酰基)六氢化均三嗪制备RDX[J].爆破器材,2012,41(04):9.
 ZHANG Yuanbin,CHEN Wenjing,YE Zhiwen.Preparation of RDX by Nitrolysis of 1,3,5-Triacetyl Hexahydro-1,3,5-Triazaine with N2O5/HNO3[J].EXPLOSIVE MATERIALS,2012,41(03):9.
[6]郑思友①,夏斌①,何振①,等.乳化炸药损伤对爆炸性能的影响[J].爆破器材,2013,42(02):21.[doi:10.3969/j.issn.1001-8352.2013.02.006]
 ZHENG Siyou,XIA Bin,HE Zhen,et al.Influence of the Damage of Emulsion Explosive on Detonation Property[J].EXPLOSIVE MATERIALS,2013,42(03):21.[doi:10.3969/j.issn.1001-8352.2013.02.006]
[7]黄亚峰,王晓峰,王红星,等.火炸药双螺杆挤出工艺的研究现状与发展[J].爆破器材,2013,42(04):41.[doi:10.3969/j.issn.1001-8352.2013.04.010]
 HUANG Yafeng,WANG Xiaofeng,WANG Hongxing,et al.Research Status and Development of the Twin Screw Extrusion Technology on the propellants and explosives[J].EXPLOSIVE MATERIALS,2013,42(03):41.[doi:10.3969/j.issn.1001-8352.2013.04.010]
[8]封雪松,徐洪涛,田轩,等.含储氢合金炸药的能量研究[J].爆破器材,2013,42(05):13.[doi:10.3969/j.issn.1001-8352.2013.05.003]
 FENG Xuesong,XU Hongtao,TIAN Xuan,et al.Energy Research of Explosive Containing Hydrogen Storage Alloy[J].EXPLOSIVE MATERIALS,2013,42(03):13.[doi:10.3969/j.issn.1001-8352.2013.05.003]
[9]刘艳萍,金大勇,高玉玲,等.DNAN基含铝熔铸炸药倒药方法研究[J].爆破器材,2014,43(05):51.[doi:10.3969/j.issn.1001-8352.2014.05.011]
 LIU Yanping,JIN Dayong,GAO Yuling,et al.Study on the Chargeinverted Method of DNANbased Aluminized Meltcast Explosive[J].EXPLOSIVE MATERIALS,2014,43(03):51.[doi:10.3969/j.issn.1001-8352.2014.05.011]
[10]杨惠,杨建钢,方学谦.支持向量机法预测单质炸药爆速的研究[J].爆破器材,2015,44(02):28.[doi:10.3969/j.issn.1001-8352.2015.02.007]
 YANG Hui,YANG Jiangang,FANG Xueqian.Prediction the Detonating Velocity of Elemental Explosives by Support Vector Machine[J].EXPLOSIVE MATERIALS,2015,44(03):28.[doi:10.3969/j.issn.1001-8352.2015.02.007]

备注/Memo

备注/Memo:
收稿日期:2023-08-09
基金项目:国防重大基础研究专项
第一作者:赵东(2001—),男,硕士研究生,主要从事弹药动态力学响应及安全性研究。E-mail:1303214649@qq.com
通信作者:屈可朋(1983—),男,硕士,研究员,主要从事弹药动态力学响应及安全性研究。E-mail:155301498@qq.com
更新日期/Last Update: 2024-06-03