[1]屈可朋, 陈鹏, 李亮亮, 等. 含能装药损伤研究进展[J]. 飞航导弹, 2018(11): 92-96.
QU K P, CHEN P, LI L L, et al. Research progress on damage of energetic charge [J]. Aerodynamic Missile Journal, 2018(11): 92-96.
[2]周忠彬, 高金霞, 刘龑龙, 等. 成型温度对PBX药柱力学性能及破坏形式的影响研究[J]. 火工品, 2022(6): 56-59.
ZHOU Z B, GAO J X, LIU Y L, et al. Effect of molding temperature on mechanical properties and failure modes of PBX grain [J]. Initiators & Pyrotechnics, 2022(6): 56-59.
[3]梁华琼, 雍炼, 唐常良, 等. RDX为基的PBX炸药压制过程损伤形成研究[J]. 含能材料, 2009, 17(6): 713-716.
LIANG H Q, YONG L, TANG C L, et al. Pressing damage of RDX-based polymer bonded explosive [J]. Chinese Journal of Energetic Materials, 2009, 17(6): 713-716.
[4]王秋雨, 孙家利, 卢凤生, 等. 高能炸药分步压装药工艺过程控制及标准研究[J]. 新技术新工艺, 2020(1): 71-74.
WANG Q Y, SUN J L, LU F S, et al. Research on the craft process control and standard of high explosive step press charging [J]. New Technology & New Process, 2020(1): 71-74.
[5]SANHEY W, DUBOIS C, LAROCHE I. Numerical modeling of the cooling cycle and associated thermal stresses in a melt explosive charge [J]. AIChE Journal, 2016, 62(10): 3797-3811.
[6]胡菲. 熔铸炸药固化参数全时域测试及内部缺陷成因[D]. 太原: 中北大学, 2022.
HU F. Full temporal domain test of solidification parameters on the melt-cast explosives and cause of internal defects [D]. Taiyuan: North University of China, 2022.
[7]SUN D W, GARIMELLA S V. Numerical and experimental investigation of solidification shrinkage [J]. Numerical Heat Transfer, Part A: Applications, 2007, 52(2): 145-162.
[8]MENG J J, ZHOU L, ZHANG X R. Effect of pressure of the casting vessel on the solidification characteristics of a DNAN/RDX melt-cast explosive [J]. Journal of Energetic Materials, 2017, 35(4): 385-396.
[9]KUMMAR A S, RAO V D. Modeling of cooling and solidification of TNT based cast high explosive charges [J]. Defence Science Journal, 2014, 64(4): 339-343.
[10]杨治林, 李昂, 余瑶, 等. 战斗部顺序凝固装药过程数值模拟研究[J]. 兵器装备工程学报, 2022, 43(9): 193-200.
YANG Z L, LI A, YU Y, et al. Research on numerical simulation of sequential solidification charge process of warhead [J]. Journal of Ordnance Equipment Engineering, 2022, 43(9): 193-200.
[11]金大勇, 王红星, 牛国涛, 等. 正交试验法研究DNAN基熔铸炸药的装药工艺[J]. 含能材料, 2014, 22 (6): 804-807.
JIN D Y, WANG H X, NIU G T, et al. Charge process of DNAN based melt cast explosive by orthogonal experiments[J]. Chinese Journal of Energetic Materials, 2014, 22(6): 804-807.
[12]MUDRYY R, JIA S, NASTAC L. Recent advances on the solidification processing of cast energetic materials [M]//TIRYAKLOGLU M, CAMPBELL J, BYCZYNSKI G. Shape Casting: 5th International Symposium 2014. Springer, 2014: 67-74.
[13]CHEN S X, QIAN H, LIU B X, et al. The effect of highquality RDX on the safety and mechanical properties of pressed PBX [J]. Materials, 2022, 15(3): 1185.
[14]REYNOLDS J G, HSU P C, HUST G A, et al. Hot spot formation in mock materials in impact sensitivity testing by drop hammer [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(11): 1303-1308.
[15]李俊玲, 王硕, 傅华, 等. SHPB实验加载方式对PBX炸药力学响应的影响研究[J]. 含能材料, 2019, 27(10): 824-829.
LI J L, WANG S, FU H, et al. Investigation into the influences of SHPB loading ways on the mechanical response of PBX [J]. Chinese Journal of Energetic Materials, 2019, 27(10): 824-829.
[16] 陈鹏, 屈可朋, 李亮亮, 等. PBX炸药剪切流动点火性能的实验研究[J]. 火炸药学报, 2020, 43(1): 69-73, 80.
CHEN P, QU K P, LI L L, et al. Experimental study on shear-flow ignition performance of PBX explosive [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 69-73, 80.
[17]焦纲领, 陈鹏万, 王志浩, 等. 浇注CL20基混合炸药的高速破片撞击安全性[J]. 火炸药学报, 2023, 46(4): 321-326.
JIAO G L, CHEN P W, WANG Z H, et al. The safety of cast CL-20-based PBX under high-velocity fragment impact [J]. Chinese Journal of Explosives & Propellants, 2023, 46(4): 321-326.
[18]YUAN H W, CHEN Y L, TANG W, et al. Study on applicability of phase field method in quasi-static fracture behavior simulation of PBX components [J]. Journal of Physics: Conference Series, 2023, 2478: 022003.
[19]龚芹. 基于三维细观结构的PBX炸药损伤机理研究[D]. 重庆: 重庆大学, 2021.
GONG Q. Study on damage mechanism of PBX based on threedimensional meso-structure [D]. Chongqing: Chongqing University, 2021.
[20]杨存丰, 田勇, 张伟斌, 等. 基于X射线显微CT的PBX热冲击损伤特征[J]. 含能材料, 2022, 30(9): 959-965.
YANG C F, TIAN Y, ZHANG W B, et al. Thermal shock damage characteristics of polymer bonded explosive based on X-ray micro-computed tomography [J]. Chinese Journal of Energetic Materials, 2022, 30(9): 959-965.
[21]ZI P D, CHEN J, ZHANG R, et al. Double shock experiments on PBX explosive JOB-9003 [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(7): 784-790.
[22]李亮亮, 孙兴昀, 付改侠, 等. 两次脉冲加载条件下炸药装药的安全性实验技术[J]. 爆破器材, 2022, 51(2): 31-34, 41.
LI L L, SUN X Y, FU G X, et al. Experimental technology of safety of explosive charge under two pulse loading conditions [J]. Explosive Materials, 2022, 51(2): 31-34, 41.
[23]聂少云, 薛鹏伊, 代晓淦. 模拟多层穿靶过程装药安全性评价方法[J]. 火炸药学报, 2020, 43(5): 537-542.
NIE S Y, XUE P Y, DAI X G. Method of evaluating the safety of charging in a multi-layer penetration process [J]. Chinese Journal of Explosives & Propellants, 2020, 43(5): 537-542.
[24]戴开达, 陈昂, 陈鹏万, 等. 高聚物黏结炸药模拟材料冲剪实验下的动态变形破坏研究[J]. 北京理工大学学报, 2015, 35(增刊2): 6-9.
DAI K D, CHEN A, CHEN P W, et al. Dynamic deformation and fracture of polymer bonded explosive simulantunder shear and impact test [J]. Transactions of Beijing Institute of Technology, 2015, 35(Suppl.2): 6-9.
[25]胡雪垚, 屈可朋, 张广华, 等. 一种子弹撞击炸药装药压缩剪切试验装置及设计方法: CN115876606A [P]. 2023-03-31.
[26]DAI X G, WEN Y S, WEN M P, et al. Projectile impact ignition and reaction violent mechanism for HMX-based polymer bonded explosives at high temperature [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(7): 799-808.
[27]屈可朋, 李亮亮, 肖玮. 高低温循环及对称冲击耦合加载下炸药的安全性研究[J]. 爆破器材, 2019, 48(4): 43-46, 53.
QU K P, LI L L, XIAO W. Safety of explosive under high and low temperature cycle and coupling loading of symmetrical colliding [J]. Explosive Materials, 2019, 48(4): 43-46, 53.
[28]ROTARIU T, MOLDOVAN A E, TOADER G, et al. “Green” PBX formulations based on high explosives (RDX and HMX) and water-soluble pH-sensitive polymeric binders [J]. Polymers, 2023, 15(7): 1790.
[29]HIKAL W M, BHATTACHARIA S K, VAUGHN M W, et al. Sublimation and diffusion kinetics of 2,4,6-trinitrotoluene (TNT) single crystals by atomic force microscopy (AFM) [J]. Molecules, 2022, 27(17): 5482.
[30]YEAGER J D, MANNER V W, STULL J A, et al. Importance of microstructural features in mechanical response of castcured HMX formulations [J].AIP Conference Proceedings, 2018, 1979 (1): 070033.
[31]YEAGER J D, KUETTNER L A, DUQUE A L, et al. Microcomputed X-Ray tomographic imaging and image processing for microstructural characterization of explosives [J]. Materials, 2020, 13(20): 4517.
[32]许礼吉, 段卓平, 白志玲, 等. RDX基PBX炸药热损伤演化行为的量化表征[J]. 兵工学报, 2023, 44 (7): 2002-2013.
XU L J, DUAN Z P, BAI Z L, et al. Quantitative characterization of thermal damage evolution of RDX-based PBX explosives [J]. Acta Armamentarii, 2023, 44 (7): 2002-2013.
[33]邱芷葳. 面向PBX工程应用的声发射损伤监测方法研究[D]. 绵阳:中国工程物理研究院, 2020.
QIU Z W. Research on acoustic emission damage monitoring method for PBX engineering applications[D]. Mianyang: China Academy of Engineering Physics, 2020.
[34]WANG Y, CHARBAL A, DUFOUR J E, et al. Hybrid multiview correlation for measuring and monitoring thermomechanical fatigue test [J]. Experimental Mechanics, 2020, 60(1): 13-33.
[35]周忠彬, 吕永柱, 张博, 等. 不同撞击速度下压装炸药损伤规律研究[J]. 兵器装备工程学报, 2023, 44(8): 8-12, 80.
ZHOU Z B, Lǔ Y Z, ZHANG B, et al. Study on damage law of pressed explosives under different impact velocities [J]. Journal of Ordnance Equipment Engineering, 2023, 44(8): 8-12, 80.
[36]ZHOU Z B, CHEN P W, HUANG F L, et al. Experimental study on the micromechanical behavior of a PBX simulant using SEM and digital image correlation method [J]. Optics and Lasers in Engineering, 2011, 49(3): 366-370.
[37]王延珺, 邹翔, 潘兵, 等. 基于数字体图像相关法的TATB基PBX材料内部变形测量[J]. 含能材料, 2022, 30(12): 1272-1281.
WANG Y J, ZOU X, PAN B, et al. 3D deformation measurement in TATB based PBX based on digital volume correlation with μ?computed tomography [J]. Chinese Journal of Energetic Materials, 2022, 30(12): 1272-1281.
[38]BOWDEN F P, YOFFE A D,HUDSON G E. Initiation and growth of explosion in liquids and solids [J].American Journal of Physics, 1952, 20(4): 250-251.
[39]尚海林, 赵锋, 王文强, 等. 冲击作用下炸药热点形成的3维离散元模拟[J]. 爆炸与冲击, 2010, 30(2): 131-137.
SHANG H L, ZHAO F, WNAG W Q, et al. Threedimensional discrete element simulation of hot spots in explosives under shock loading [J]. Explosion and Shock Waves, 2010, 30(2): 131-137.
[40]白志鑫, 蒋城露, 刘福生, 等. 含能材料“热点”点火研究进展[J]. 火炸药学报, 2023, 46(4): 285-298.
BAI Z X, JIANG C L, LIU F S, et al. Progresses of “hot spot” ignition in energetic materials [J]. Chinese Journal of Explosives & Propellants, 2023, 46(4): 285-298.
[41]章冠人, 陈大年. 凝聚炸药起爆动力学[M]. 北京: 国防工业出版社, 1991: 270.
[42]彭亚晶, 叶玉清. 含能材料起爆过程“热点”理论研究进展[J]. 化学通报, 2015, 78(8): 693-701.
PENG Y J, YE Y Q. Research progress of “hot-spot” theory in energetic materials initiation [J]. Chemistry, 2015, 78(8): 693-701.
[43]KIM K, SOHN C H. Modeling of reaction buildup process in shock porous explosives [C]//Proceedings of the 8th International Symposium on Detonation. Bethesda, MD, US: Naval Surface Warfare Center, 1985.
[44]成丽蓉, 施惠基, 贺元吉, 等. 复杂受力环境下非均质炸药孔洞塌缩热点生成机理[J]. 含能材料, 2016, 24(2): 171-176.
CHENG L R, SHI H J, HE Y J, et al. Hot-spot forming mechanism of holes collapse in heterogeneous solid explosives under complicated stress environment [J]. Chinese Journal of Energetic Materials, 2016, 24(2): 171-176.
[45]温丽晶, 段卓平, 张震宇, 等. 弹粘塑性双球壳塌缩热点反应模型[J]. 高压物理学报, 2011, 25(6): 493-500.
WEN L J, DUAN Z P, ZHANG Z Y, et al. An elastic/viscoplastic pore collapse model of double-layered hollow sphere for hot-spot ignition in shocked explosives [J]. Chinese Journal of High Pressure Physics, 2011, 25(6): 493-500.
[46]LIU Y R, DUAN Z P, ZHANG Z Y, et al. A mesoscopic reaction rate model for shock initiation of multi-component PBX explosives [J]. Journal of Hazardous Materals, 2016, 317: 44-51.
[47]DIENES J K. Friction hotspots and propellant sensitivity [J]. MRS Online Proceedings Library, 1983, 24: 373-381.
[48]BENNETT J G, HABERMAN K S, JOHNSON J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives [J]. Journal of the Mechanics and Physics of Solids, 1998, 46(12): 2303-2322.
[49]CLANCY S P, JOHNSON J N, BURKETT M W. Modeling the viscoelastic and brittle fracture response of a high explosive in an eulerian hydrocode[C]//11th International Detonation Symposium. Snowmass, CO, US, 1998.
[50]成丽蓉, 施惠基, 陈荣. 战斗部装药冲击损伤及热点形成的数值分析[J]. 高压物理学报, 2013, 27(4): 575-581.
CHENG L R, SHI H J, CHEN R. Numerical simulation on the damage and hot-spot formation in warhead charge under shock [J]. Chinese Journal of High Pressure Physics, 2013, 27(4): 575-581.
[51]杨昆, 吴艳青, 金朋刚, 等. 典型压装与浇注PBX炸药缝隙挤压损伤-点火响应[J]. 含能材料, 2020, 28(10): 975-983.
YANG K, WU Y Q, JIN P G, et al. Damage-ignition simulation for typical pressed and casted PBX under crack-extruded loading [J]. Chinese Journal of Energetic Materials, 2020, 28(10): 975-983.
[52]WEI Y C, MILLER C, OLSEN D, et al. Prediction of probabilistic shock initiation thresholds of energetic materials through evolution of thermal-mechanical dissipation and reactive heating [J]. Journal of Applied Mechanics, 2021, 88(9): 091005.
[53]WALKER F E, WASLEY R J. Critical energy for shock initiation of heterogeneous explosives [J]. Explosive Stoffe, 1969, 17(1): 9-13.
[54]JAMES H R. An extension to the critical energy criterion used to predict shock initiation thresholds [J]. Propellants, Explosives, Pyrotechnics, 1996, 21(1): 8-13.
[55]WELLE E J, MOLEK C D, WIXOM R R, et al. Microstructural effects on the ignition behavior of HMX [J]. Journal of Physics: Conference Series, 2014, 500(5): 052049.
[56]KIM S, MILLER C, HORIE Y, et al. Computational prediction of probabilistic ignition threshold of pressed granular octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) under shock loading [J]. Journal of Applied Physics, 2016, 120(11): 115902.
[57]马丹竹. 低速撞击下炸药的安全性研究[D]. 北京: 北京理工大学, 2013.
MA D Z. Investigation of the safety for explosives under low velocity impact [D]. Beijing: Beijing Institute of Technology, 2013.