[1]过光飞①,吴三震①,徐飞扬①,等.氟橡胶包覆对CL-20机械感度及爆轰特性的影响研究[J].爆破器材,2024,53(02):1-6.[doi:10.3969/j.issn.1001-8352.2024.02.001]
 GUO Guangfei,WU Sanzhen,XU Feiyang,et al.Influence of Fluorine Rubber Coating on Mechanical Sensitivities and Detonation Characteristics of CL-20[J].EXPLOSIVE MATERIALS,2024,53(02):1-6.[doi:10.3969/j.issn.1001-8352.2024.02.001]
点击复制

氟橡胶包覆对CL-20机械感度及爆轰特性的影响研究
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年02
页码:
1-6
栏目:
基础理论
出版日期:
2024-04-03

文章信息/Info

Title:
Influence of Fluorine Rubber Coating on Mechanical Sensitivities and Detonation Characteristics of CL-20
文章编号:
5864
作者:
过光飞吴三震徐飞扬马腾徐森①②刘大斌
①南京理工大学化学与化工学院(江苏南京,210094)
②国家民用爆破器材质量检验检测中心(江苏南京,210094)
Author(s):
GUO Guangfei WU Sanzhen XU Feiyang MA Teng XU Sen①② LIU Dabin
①School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②China National Quality Inspection and Testing Center for Industrial Explosive Materials (Jiangsu Nanjing, 210094)
关键词:
CL-20包覆机械感度爆轰性能
Keywords:
CL-20 coating mechanical sensitivity detonation performance
分类号:
TJ55
DOI:
10.3969/j.issn.1001-8352.2024.02.001
文献标志码:
A
摘要:
为研究 CL-20 晶体表面钝化对安全及爆轰性能的影响,采用氟橡胶 F2311 作为黏结剂,基于水悬浮法对比研究了 CL-20 包覆前、后的机械感度及爆轰性能变化规律。实验结果表明: F2311包覆可以显著改善 CL-20 材料的表面缺陷;在 -20 、 0 、 20 、 40 °C 与 80 °C 条件下,F2311包覆可明显提高 CL-20 的临界撞击能与临界摩擦载荷;在 -40 ℃环境下,包覆对 CL-20 临界撞击能与临界摩擦载荷无影响,原因可能与包覆材料的玻璃化转变温度有关;包覆后样品的实测爆热与爆速可达到 5 612.03 kJ/kg 和 8 975.81m/s,与 CL-20 相比分别减小了8.70 % 和 2.39 %。研究结论对 CL-20的安全储存、使用和高效能量输出具有一定的参考价值。
Abstract:
In order to investigate the influence of crystal surface passivation on the safety and detonation performance of CL-20, fluorine rubber (F2311) was used as a binder, and the changes in mechanical sensitivity and detonation performance of CL-20 before and after coating were compared using water suspension method. The experimental results indicate that coating CL-20 with F2311 can significantly improve the surface defects of CL-20 materials. At -20, 0, 20, 40 ℃ and 80 ℃, the critical impact energy and critical friction load of CL-20 coated with F2311 increase significantly. At -40℃, the coating has no effect on the critical impact energy and critical friction load of CL-20, which may be related to the glass transition temperature of the coating material. The measured detonation heat and detonation velocity of the coated samples can reach 5 612.03 kJ/kg and 8 975.81 m/s, respectively, which reduce by 8.70% and 2.39% compared to CL-20. It has certain guidance for the secure storage, use, and efficient energy output of CL-20.

参考文献/References:

[1]曾贵玉, 聂福德, 刘晓东, 等. 六硝基六氮杂异伍兹烷(CL-20)的研究进展[J]. 含能材料, 2000, 8(3): 130-134.
ZENG G Y, NIE F D, LIU X D, et al. The developments of hexanitrohexaazaisowurtzitane [J]. Chinese Journal of Energetic Materials, 2000, 8(3): 130-134.
[2]叶宝云, 王晶禹, 安崇伟, 等. CL-20基复合含能材料的制备及性能[J]. 固体火箭技术, 2017, 40(2): 199-203.
YE B Y, WANG J Y, AN C W, et al. Preparation and properties of CL-20-based composite energetic materials [J]. Journal of Solid Rocket Technology, 2017, 40(2): 199-203.
[3]SONG C G, LI X D, YANG Y, et al. Formation and characterization of core-shell CL-20/TNT composite prepared by spray-drying technique[J]. Defence Technology, 2021, 17(6): 1936-1943.
[4]欧育湘, 孟征, 刘进全. 高能量密度化合物CL-20的合成和制备工艺进展[J]. 化工进展, 2007, 26(6): 762-768.
OU Y X, MENG Z, LIU J Q. Advance in high energy density compound CL-20: developments of synthesis route and production technologies of CL-20 [J]. Chemical Industry and Engineering Progress, 2007, 26(6): 762-768.
[5]赵希同, 付小龙, 林利红, 等. CL-20共晶含能材料计算模拟及实验制备研究进展[J]. 兵器装备工程学报, 2022, 43(3): 11-21.
ZHAO X T, FU X L, LIN L H, et al. Review on simulation and preparation of CL-20 cocrystal energetic materials [J]. Journal of Ordnance Equipment Engineering, 2022, 43(3): 11-21.
[6]任晓斌, 李军强, 宋秀铎, 等. CL20降感处理技术及在CMDB推进剂中的应用[J]. 兵器装备工程学报, 2022, 43(2): 151-157.
REN X B, LI J Q, SONG X D, et al. Recent development of CL-20 desensitization techniques and its application in CMDB propellants [J]. Journal of Ordnance Equipment Engineering, 2022, 43(2): 151-157.
[7]李海建, 陈超, 张哲, 等. 基于声共振技术的CL-20基共晶材料制备及热解过程研究[J]. 火炸药学报, 2022, 45(6): 848-855.
LI H J, CHEN C, ZHANG Z, et al. Preparation and thermal decomposition of CL-20-based cocrystals using resonant acoustic mixing [J]. Chinese Journal of Explosives & Propellants, 2022, 45(6): 848-855.
[8]肖旭, 李军, 胡大双, 等. CL20粉体的热爆炸临界温度试验研究[J]. 固体火箭技术, 2022, 45(1): 146-151.
XIAO X, LI J, HU D S, et al. Experimental study on the critical temperature of thermal explosion of CL-20 powder [J]. Journal of Solid Rocket Technology, 2022, 45(1): 146-151.
[9]ZHOU M, LUO J, XIANG D. Experimental study on the critical temperature of thermal explosion of CL-20 powder [J]. International Journal of Molecular Sciences, 2023, 24(3): 184.
[10]YANG L F, SHI X R, LI C Z, et al. Microfluidic assisted 90% loading CL-20 spherical particles: enhancing selfsustaining combustion performance[J]. Defence Technology, 2023, 22: 176-184.
[11]任秀秀, 赵省向, 方伟, 等. 3种CL-20/粘结剂PBX体系摩擦特性研究[J]. 火工品, 2020(4): 26-29.
REN X X, ZHAO S X, FANG W, et al. Study on friction properties of three CL-20/binder PBX system [J]. Initiators & Pyrotechnics, 2020(4): 26-29.
[12]魏华, 焦清介, 郭学永. 石蜡/Estane5703复合钝感包覆CL-20的研究[J]. 含能材料, 2017, 25(4): 321-325.
WEI H, JIAO Q J, GUO X Y. Desensitizing technology of CL-20 by coating wax and Estane5703 [J]. Chinese Journal of Energetic Materials, 2017, 25(4): 321-325.
[13]李春燕, 范家柯, 程王健, 等. CL-20/聚氨酯基复合物喷墨打印成型及性能研究[J]. 火工品, 2022(5): 35-40.
LI C Y, FAN J K, CHENG W J, et al. Research on molding and performance of CL-20/polyurethane-based composite inkjet printing [J]. Initiators & Pyrotechnics, 2022(5): 35-40.
[14]廖东桀, 徐传豪, 孔胜, 等. 高强度CL-20/HTPE基微尺度传爆药的打印成型及性能表征[J]. 含能材料, 2022, 30(9): 920-926.
LIAO D J, XU C H, KONG S, et al. Inkjet printing and performance characterization of CL-20/HTPE based microscaIe booster with high strength[J]. Chinese Journal of Energetic Materials, 2022, 30(9): 920-926.
[15]LI S S, XIAO J J. Molecular dynamics simulations for effects of fluoropolymer binder content in CL-20/TNT based polymer-bonded explosives[J]. Molecules, 2021, 26(16): 4876.
[16]吴星亮, 王红松, 李文海, 等. RDX和HMX机械刺激临界反应阈值试验研究[J]. 爆破器材, 2020, 49(6): 9-14.
WU X L, WANG H S, LI W H, et al. Experimental study on critical response threshold of RDX and HMX under mechanical stimulation [J]. Explosive Materials, 2020, 49(6): 9-14.
[17]屈蓓, 唐秋凡, 李吉祯, 等. 分子动力学及热分析方法研究CL-20与推进剂主要组分的相互作用[J]. 固体火箭技术, 2017, 40(4): 476-483.
QU B, TANG Q F, LI J Z, et al. Interaction of CL-20 with solid propellant components by molecular dynamics simulation and thermal analysis method [J]. Journal of Solid Rocket Technology, 2017, 40(4): 476-483.
[18]刘强, 肖继军, 陈军, 等. 不同温度下ε-CL-20晶体感度和力学性能的分子动力学模拟计算[J]. 火炸药学报, 2014, 37(2): 7-12, 17.
LIU Q, XIAO J J, CHEN J, et al. Molecular dynamics simulation on sensitivity and mechanical properties of ε-CL-20 crystals at different temperatures [J]. Chinese Journal of Explosives & Propellants, 2014, 37(2): 7-12, 17.
[19]詹春红, 屈延阳, 师鹏翔, 等. 氟橡胶F2311特性黏度对高聚物粘结炸药成型及力学性能的影响[J]. 化工新型材料, 2020, 48(11): 77-79, 84.
ZHAN C H, QU Y Y, SHI P X, et al. Influence of characteristic viscosity of F2311 fluorine rubber on the forming and mechanical property of PBX [J]. New Chemical Materials, 2020, 48(11): 77-79, 84.
[20]汪慧思, 陶博文, 张小平, 等. 铝/改性氟橡胶复合燃料的制备及应用[J]. 含能材料, 2021, 29(11): 1068-1075.
WANG H S, TAO B W, ZHANG X P, et al. Preparation and application of Al/modified-fluororubber composite fuel[J]. Chinese Journal of Energetic Materials, 2021, 29(11): 1068-1075.
[21]冯晓军, 薛乐星, 曹芳洁, 等. CL-20基含铝炸药组分微结构对其爆炸释能特性的影响[J]. 火炸药学报, 2019, 42(6): 608-613.
FENG X J, XUE L X, CAO F J, et al. Effect of ingredients microstructure of CL-20-based aluminum-containing explosives on explosive energy release [J]. Chinese Journal of Explosives & Propellants, 2019, 42(6): 608-613.
[22]郭惠丽, 黄亚峰, 金朋刚, 等. 炸药摩擦感度研究和测试方法进展[J]. 火工品, 2021(6): 50-53.
GUO H L, HUANG Y F, JIN P G, et al. Development of the research and test methods on friction sensitivity of explosive [J]. Initiators & Pyrotechnics, 2021(6): 50-53.
[23]张为鹏, 黄亚峰, 金朋刚, 等. 炸药摩擦感度研究进展和趋势[J]. 化学推进剂与高分子材料, 2022, 20(5): 9-16.
ZHANG W P, HUANG Y F, JIN P G, et al. Research progress and trends in friction sensitivity of explosives [J]. Chemical Propellants and Polymeric Materials, 2022, 20(5): 9-16.
[24]钱媛, 李亚宁, 贺伟君, 等. 高分子复合黏胶体系对CL-20包覆及性能的影响[J]. 爆破器材, 2023, 52(1): 9-16.
QIAN Y, LI Y N, HE W J, et al. Effect of polymer composite viscose system on the coating and properties of CL-20 [J]. Explosive Materials, 2023, 52(1): 9-16.
[25]王功亮, 殷浩, 张庆红, 等. 配合体系对低温氟橡胶胶料性能的影响[J]. 橡胶工业, 2022, 69(10): 739-744.
WANG G L, YIN H, ZHANG Q H, et al. Effect of compounding systems on properties of low-temperature fluororubber compounds [J]. China Rubber Industry, 2022, 69(10): 739-744.
[26]惠君明, 陈云天. 炸药爆炸理论[M]. 南京: 江苏科学技术出版社, 1995.
HUI J M, CHEN Y T. Explosive explosion theory [M]. Nanjing: Jiangsu Science and Technology Press, 1995.
[27]欧育湘, 刘进全. 高能量密度化合物[M]. 北京: 国防工业出版社, 2005.
OU Y X, LIU J Q. High energy density compounds [M]. Beijing: National Defense Industry Press, 2005.

相似文献/References:

[1]丁伟兴①,胡小玲②,董波②,等.N2O5/HNO3硝解TAIW一步法制备ε-HNIW[J].爆破器材,2015,44(04):15.[doi:10.3969/j.issn.1001-8352.2015.04.004]
 DING Weixing,HU Xiaoling,DONG Bo,et al.Synthesis of ε-HNIW by One-pot Nitrolysis of TAIW with N2O5/HNO3[J].EXPLOSIVE MATERIALS,2015,44(02):15.[doi:10.3969/j.issn.1001-8352.2015.04.004]
[2]卜令涛①,董波②,钱华②③,等.表面活性剂催化硝化TAIW制备CL-20[J].爆破器材,2016,45(02):25.[doi:10.3969/j.issn.1001-8352.2016.02.006]
 BU Lingtao,DONG Bo,QIAN Hua,et al.Economic Preparation of CL-20 by Nitrolysis of TAIW Using Surfactants as Catalyst[J].EXPLOSIVE MATERIALS,2016,45(02):25.[doi:10.3969/j.issn.1001-8352.2016.02.006]
[3]张路遥①②,刘卉①,郑文芳①,等.CL-20二氟氨基衍生物结构与性能的DFT研究[J].爆破器材,2018,47(03):7.[doi:10.3969/j.issn.1001-8352.2018.03.002]
 ZHANG Luyao,LIU Hui,ZHENG Wenfang,et al.DFT Study on the Structure and Properties of Difluoramino Derivatives of CL-20[J].EXPLOSIVE MATERIALS,2018,47(02):7.[doi:10.3969/j.issn.1001-8352.2018.03.002]
[4]李顺勇.氟橡胶包覆硝酸肼镍及其对雷管撞击感度的影响[J].爆破器材,2019,48(04):33.[doi:10.3969/j.issn.1001-8352.2019.04.006]
 LI Shunyong.Nickel Hydrazine Nitrate Coated with Fluororubber and Its Effect on Impact Sensitivity of Detonator[J].EXPLOSIVE MATERIALS,2019,48(02):33.[doi:10.3969/j.issn.1001-8352.2019.04.006]
[5]李金鑫①,勾莉①,张争争①,等.CL-20基高爆热含铝压装混合炸药的研究[J].爆破器材,2020,49(03):33.[doi:10.3969/j.issn.1001-8352.2020.03.006]
 LI Jinxin,GOU Li,ZHANG Zhengzheng,et al.Study on CL-20 Based Aluminized PBX with High Detonation Heat[J].EXPLOSIVE MATERIALS,2020,49(02):33.[doi:10.3969/j.issn.1001-8352.2020.03.006]
[6]李文祥,邢晓玲,刁小强,等.CL-20基薄膜炸药的爆轰特性研究[J].爆破器材,2020,49(05):20.[doi:doi:10.3969/j.issn.1001-8352.2020.05.004]
 LI Wenxiang,XING Xiaoling,DIAO Xiaoqiang,et al.Detonation Characteristics of CL-20 Based Thin Film Explosive[J].EXPLOSIVE MATERIALS,2020,49(02):20.[doi:doi:10.3969/j.issn.1001-8352.2020.05.004]
[7]张正中,谢五喜,刘运飞,等.高氯酸铵降感技术研究进展[J].爆破器材,2023,52(01):1.[doi:10.3969/j.issn.1001-8352.2023.01.001]
 ZHANG Zhengzhong,XIE Wuxi,LIU Yunfei,et al.Research Progress of the Desensitization Technology of Ammonium Perchlorate[J].EXPLOSIVE MATERIALS,2023,52(02):1.[doi:10.3969/j.issn.1001-8352.2023.01.001]
[8]韩仲熙,姚李娜,王彩玲,等.DAP-4耐热炸药的包覆降感研究[J].爆破器材,2023,52(05):7.[doi:10.3969/j.issn.1001-8352.2023.05.002]
 HAN Zhongxi,YAO Lina,WANG Cailing,et al.Study on Coating and Sensitization Reduction of DAP-4 Heat-Resistant Explosive[J].EXPLOSIVE MATERIALS,2023,52(02):7.[doi:10.3969/j.issn.1001-8352.2023.05.002]
[9]郏杭生①,崔立宝①,丁亚军①,等.含CL-20的微孔发射药的设计及性能研究[J].爆破器材,2024,53(04):37.[doi:10.3969/j.issn.1001-8352.2024.04.006]
 JIA Hangsheng,CUI Libao,DING Yajun,et al.Design and Performance Study on Microporous Gun Propellant Containing CL-20[J].EXPLOSIVE MATERIALS,2024,53(02):37.[doi:10.3969/j.issn.1001-8352.2024.04.006]
[10]钱媛,李亚宁,贺伟君,等.高分子复合黏胶体系对CL-20包覆及性能的影响[J].爆破器材,2023,52(01):9.[doi:10.3969/j.issn.1001-8352.2023.01.002]
 QIAN Yuan,LI Yaning,HE Weijun,et al.Effect of Polymer Composite Viscose System on the Coating and Properties of CL-20[J].EXPLOSIVE MATERIALS,2023,52(02):9.[doi:10.3969/j.issn.1001-8352.2023.01.002]

备注/Memo

备注/Memo:
收稿日期:2023-07-18
基金项目:装备预研国防科技重点实验室基金(6142603200509,6142603180408);中国博士后科学基金面上资助(2023M731695)
第一作者:过光飞(2001—),男,硕士研究生,主要从事火炸药的安全应用。E-mail:guoguangfei147@163.com
通信作者:徐森(1981—),男,教授,博导,主要从事含能材料安全性研究。E-mail:xusen@njust.edu.com
更新日期/Last Update: 2024-04-02