[1]张萌昭,周忠彬,沈飞.侵彻单层靶时着靶姿态对装药损伤的影响规律研究[J].爆破器材,2023,52(03):23-31.[doi:10.3969/j.issn.1001-8352.2023.03.004]
 ZHANG Mengzhao,ZHOU Zhongbin,SHEN Fei.Influence of Target Attitude on Charge Damage during Penetration into a Single-Layer Target[J].EXPLOSIVE MATERIALS,2023,52(03):23-31.[doi:10.3969/j.issn.1001-8352.2023.03.004]
点击复制

侵彻单层靶时着靶姿态对装药损伤的影响规律研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
52
期数:
2023年03
页码:
23-31
栏目:
爆炸材料
出版日期:
2023-06-06

文章信息/Info

Title:
Influence of Target Attitude on Charge Damage during Penetration into a Single-Layer Target
文章编号:
5787
作者:
张萌昭周忠彬沈飞
西安近代化学研究所(陕西西安,710065)
Author(s):
ZHANG Mengzhao ZHOU Zhongbin SHEN Fei
Xi’an Modern Chemistry Research Institute (Shaanxi Xi’an, 710065)
关键词:
爆炸力学固体力学着靶姿态弹体侵彻装药损伤
Keywords:
explosive mechanics solid mechanics target attitude projectile penetration charge damage
分类号:
TJ55
DOI:
10.3969/j.issn.1001-8352.2023.03.004
文献标志码:
A
摘要:
为研究着靶姿态对高速侵彻弹装药损伤的影响,依据实际战斗部的结构尺寸设计了小尺寸模型试验弹,在125 mm口径的滑膛炮发射平台上开展了试验弹以不同攻角斜侵彻单层钢靶试验。通过理论计算得到着靶姿态对侵彻过程能量损失的影响。利用CT扫描无损检测技术观测不同着靶姿态下试验弹内部的损伤情况。运用LS-DYNA对试验弹侵彻钢靶过程中装药的力学响应过程进行模拟计算。结果表明:在斜侵彻单层钢靶的过程中,着角一定时,能量损耗与攻角呈指数关系;试验弹的倾角越大,装药尾部受到的应力波拉伸压缩反复作用越明显,装药在侵彻过程中长度变化越大,更易出现深度裂纹、塌边等损伤;壳体外形变化会引起装药受到的压缩应力阻碍微裂纹的扩展和滑移,减少宏观损伤的出现。
Abstract:
In order to study the effect of the target attitude on the damage of the high-speed penetrating projectile charge, a small-scale model test projectile was designed, and the test projectile was carried out on the 125 mm caliber smoothbore gun launching platform to penetrate the single projectile obliquely with different angles of attack. The influence of target attitude on energy loss during penetration process was obtained through theoretical calculation. CT scanning nondestructive testing technology was used to observe the internal damage of the test projectile under different target orientations. LS-DYNA was used to simulate and calculate the mechanical response process of the charge during the penetration of the test projectile into a steel target. The results show that, in the process of obliquely penetrating a single-layer steel target, when the angle of impact is constant, the energy loss and the angle of attack have an exponential relationship. The larger the inclination angle of the test projectile, the more obvious the repeated action of stress wave tension and compression on the tail of the charge, the greater the change in the length of the charge during the penetration process, and the more prone to damage such as deep cracks and slumps. The compressive stress of the charge caused by the change of the shell shape will hinder the expansion and slip of micro-cracks and reduce the appearance of macroscopic damage.

参考文献/References:

[1]刘佳辉. 高品质HMX在压装PBX中的晶体损伤研究[D].绵阳: 中国工程物理研究院, 2012.
LIU J H. Study on crystal damage of high quality HMX in pressed PBX [D]. Mianyang: China Academy of Engineering Physics, 2012.
[2]梁华琼, 雍炼, 唐常良, 等. 压制过程中PBX炸药颗粒的破碎及损伤[J]. 火炸药学报, 2010, 33(1): 27-30.
LIANG H Q, YONG L, TANG C L, et al. Crack and damage of PBX during pressing [J]. Chinese Journal of Explosives & Propellants, 2010, 33(1): 27-30.
[3]BENNETT J G, HABERMAN K S, JOHNSON J N, et al. A constitutive model for the non-shock ignition and mechanical response of high explosives [J]. Journal of the Mechanics and Physics of Solids, 1998, 46: 2303-2322.
[4]CHEN P W, HUANG F L, DAI K D, et al. Detection and characterization of long-pulse low-velocity impact damage in plastic bonded explosives [J]. International Journal of Impact Engineering. 2005, 31(5): 497-508.
[5]CHEN P W, HUANG F L, DING Y S. Microstructure, deformation and failure of polymer bounded explosives [J].Journal of Materials Science, 2007, 42: 5272-5280.
[6]殷瑱, 闻泉, 王雨时, 等.军用爆炸物质感度要求和评定标准综述[J]. 兵器装备工程学报, 2017, 38(2): 140-148.
YIN Z, WEN Q, WANG Y S, et al. Review on sensitivity requirements and assessment criteria of military explosive materials [J]. Journal of Ordnance Equipment Engineering, 2017, 38(2): 140-148.
[7]罗景润. PBX的损伤、断裂及本构关系研究[D]. 绵阳: 中国工程物理研究院, 2001.
LUO J R. Study on damage, fracture and constitutive relation of PBX [D]. Mianyang: China Academy of Engineering Physics, 2001.
[8]ARORA H, TARLETON E, LI-MAYER J, et al. Modelling the damage and deformation process in a plastic bonded explosive microstructure under tension using the finite element method [J]. Computational Materials Science, 2015, 110:91-101.
[9]WALTERS D J, LUSCHER D J, MANNER V W, et al. Investigating defonnation and mesoscale void creation in HMX based composites using tomography based grain scale finite element modeling [C]//AIP Conference Proceedings, 2017, 1979(1): 070031.
[10]WANG X J, WU Y Q, HUANG F L. Numerical mesoscopic investigations of dynamic damage and failure mechanisms of polymer bonded explosives [J]. International Journal of Solids and Structures, 2017, 129: 28-39.
[11]吕鹏博, 王伟力, 刘晓夏, 等. 含裂纹装药缺陷的侵爆战斗部穿甲过程装药安定性的数值模拟研究[J]. 兵器装备工程学报, 2017, 38(11): 26-30.
Lǔ P B, WANG W L, LIU X X, et al. Research on numerical simulation of stability of the charge of invasion of explosive warheads containing seam defects in armor-piercing process [J]. Journal of Ordnance Equipment Engineering, 2017, 38(11): 26-30.
[12]刘月胜, 徐文峥. 装药弹丸斜侵彻混凝土数值模拟[J]. 山西化工, 2012, 32(1): 40-43, 49.?
LIU Y S, XU W Z. Numerical simulation of oblique penetration by PBX in projectile penetrating concrete[J]. Shanxi Chemical Industry, 2012, 32(1): 40-43, 49.
[13]LEFRANCOIS A, LAMBERT P, CHESNET P, et al. Microstructural analysis of HE submitted to penetration experiments [C]//31st International Pyrotechnics Seminar. 2016: 687-705.
[14]石啸海, 戴开达, 陈鹏万, 等. 战斗部侵彻过程中PBX装药动态损伤数值模拟[J]. 中国测试, 2016, 42(10): 138-142.
SHI X H, DAI K D, CHEN P W, et al. Numerical si-mulation of dynamic damage of PBX charge during the warhead penetration process [J]. China Measurement & Testing Technology, 2016, 42(10): 138-142.
[15]侯旷怡, 李可达, 张新伟. 着靶姿态对半穿甲战斗部穿甲过程的影响[J]. 兵器装备工程学报, 2017, 38(4): 59-62.
HOU K Y, LI K D, ZHANG X W. Influence of hitting attitude in armor-piercing process [J]. Journal of Ordnance Equipment Engineering, 2017, 38(4): 59-62.
[16]BAILLY P, DELVARE F, VIAL J, et al. Dyanmic behavior of an aggregate material at simultaneous high pressure and strain rate: SHPB triaxial tests[J]. International Journal of Impact Engineering, 2011, 38(2/3): 73-84.
[17]RECHT R F, IPSON T W. Ballistic perforation dynamics[J]. Journal of Applied Mechanics, 1963, 30(3): 384-390.
[18]IPSON T W, RECHT R F. Ballistic-ponetration resistance and its measurement [J]. Experimental Mechanics, 1975, 15(7): 249-257.

相似文献/References:

[1]安二峰,杨军,陈鹏万.高锰钢整铸辙叉爆炸硬化实践与研究[J].爆破器材,2009,38(02):25.
 AN Erfeng,YANG Jun,CHEN Pengwan.Study on Explosive Hardening of Hadfield Steel Rail Frogs[J].EXPLOSIVE MATERIALS,2009,38(03):25.
[2]徐森①,张兴明①,潘峰①,等.工业炸药能量测试方法的分析[J].爆破器材,2013,42(01):18.[doi:10.3969/j.issn.1001-8352.2013.01.005]
 XU Sen,ZHANG Xingming,PAN Feng,et al.Analysis on the Energy Testing Methods of Industrial Explosives[J].EXPLOSIVE MATERIALS,2013,42(03):18.[doi:10.3969/j.issn.1001-8352.2013.01.005]
[3]臧立伟,尹建平,王志军.轴向预制破片战斗部的设计研究[J].爆破器材,2013,42(02):5.[doi:10.3969/j.issn.1001-8352.2013.02.002]
 ZANG liwei,YIN Jianping,WANG Zhijun.Optimizing Design of Axial Prefabricated Fragments[J].EXPLOSIVE MATERIALS,2013,42(03):5.[doi:10.3969/j.issn.1001-8352.2013.02.002]
[4]姚志华,李德战,付庆海,等.偏心亚半球成型装药结构的数值模拟[J].爆破器材,2013,42(02):17.[doi:10.3969/j.issn.1001-8352.2013.02.005]
 YAO Zhihua,LI Dezhan,FU Qinghai,et al.Numerical Simulation of Shape Charge with an Eccentric Subhemisphere Liner[J].EXPLOSIVE MATERIALS,2013,42(03):17.[doi:10.3969/j.issn.1001-8352.2013.02.005]
[5]杨亚东,李向东,王晓鸣.爆炸冲击波空中传播特征参量的优化拟合[J].爆破器材,2014,43(01):13.[doi:10.3969/j.issn.1001-8352.2014.01.003]
 YANG Yadong,LI Xiangdong,WANG Xiaoming.Optimum Fitting for Characteristic Parameters of Blast Shockwaves Traveling in Air[J].EXPLOSIVE MATERIALS,2014,43(03):13.[doi:10.3969/j.issn.1001-8352.2014.01.003]
[6]金朋刚,郭炜,任松涛,等.TNT密闭环境中能量释放特性研究[J].爆破器材,2014,43(02):10.[doi:10.3969/j.issn.1001-8352.2014.02.003]
 JIN Penggang,GUO Wei,REN Songtao,et al.Research on TNT Energy Release Characteristics in Enclosed Condition[J].EXPLOSIVE MATERIALS,2014,43(03):10.[doi:10.3969/j.issn.1001-8352.2014.02.003]
[7]冯海云,胡宏伟,赵向军,等.一种评估炸药作功能力的新测试方法[J].爆破器材,2014,43(02):33.[doi:10.3969/j.issn.1001-8352.2014.02.008]
 FENG Haiyun,HU Hongwei,ZHAO Xiangjun,et al.A New Test Method to Assess the Acting Ability of Explosive[J].EXPLOSIVE MATERIALS,2014,43(03):33.[doi:10.3969/j.issn.1001-8352.2014.02.008]
[8]郑思友,翟廷海,夏斌.工业雷管抗弯性能试验装置与方法设计[J].爆破器材,2014,43(03):33.[doi:10.3969/j.issn.1001-8352.2014.03.008]
 ZHENG Siyou,ZHAI Tinghai,XIA Bin.Testing System and Method Design of the Bending Resistance of Industrial Detonator[J].EXPLOSIVE MATERIALS,2014,43(03):33.[doi:10.3969/j.issn.1001-8352.2014.03.008]
[9]杨斐,王建灵,罗一鸣,等.DNTF/AP/Al体系炸药的能量特性分析[J].爆破器材,2014,43(05):11.[doi:10.3969/j.issn.1001-8352.2014.05.003]
 YANG Fei,WANG Jianling,LUO Yiming,et al.Explosion Energy Characteristics of DNTF/AP/Al Explosive[J].EXPLOSIVE MATERIALS,2014,43(03):11.[doi:10.3969/j.issn.1001-8352.2014.05.003]
[10]沈飞,王辉,余然,等.两种含铝炸药水中近场冲击波传播规律研究[J].爆破器材,2014,43(05):26.[doi:10.3969/j.issn.1001-8352.2014.05.006]
 SHEN Fei,WANG Hui,YU Ran,et al.Propagation Characteristics of Close-field Shock Wave for Two Aluminized Explosives by Underwater Explosion[J].EXPLOSIVE MATERIALS,2014,43(03):26.[doi:10.3969/j.issn.1001-8352.2014.05.006]

备注/Memo

备注/Memo:
收稿日期:2021-03-23
基金项目:国家安全重大基础研究专项; 西安近代化学研究所开放合作创新基金(SYJJ-41)
第一作者:张萌昭(1997-),女,硕士研究生,主要从事装药损伤的研究。E-mail:zmz_15@163.com
更新日期/Last Update: 2023-06-05