[1]张磊①,吴成成②,王正宏③,等.CL-20基压装型温压炸药的设计及性能研究[J].爆破器材,2022,51(05):7-11.[doi:10.3969/j.issn.1001-8352.2022.05.002]
 ZHANG Lei,WU Chengcheng,WANG Zhenghong,et al.Design and Performance Research on CL20 Based Pressed Thermobaric Explosive[J].EXPLOSIVE MATERIALS,2022,51(05):7-11.[doi:10.3969/j.issn.1001-8352.2022.05.002]
点击复制

CL-20基压装型温压炸药的设计及性能研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
51
期数:
2022年05
页码:
7-11
栏目:
基础理论
出版日期:
2022-10-11

文章信息/Info

Title:
Design and Performance Research on CL20 Based Pressed Thermobaric Explosive
文章编号:
5746
作者:
张磊吴成成王正宏李世伟王硕郭学永
①西安现代控制技术研究所(陕西西安,710065)
②北京理工大学爆炸科学与技术国家重点实验室(北京,100081)
③辽宁庆阳特种化工有限公司(辽宁辽阳,111000)
Author(s):
ZHANG LeiWU Chengcheng WANG Zhenghong LI ShiweiWANG Shuo GUO Xueyong
①Xi‘an Modern Control Technology Research Institute (Shaanxi Xi’an, 710065)
②State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology (Beijing , 100081)
③Liaoning Qingyang Special Chemical Co., Ltd. (Liaoning Liaoyang, 111000)
关键词:
CL20温压炸药爆轰性能安全性能
Keywords:
CL-20 thermobaric explosive detonation performance safety performance
分类号:
TJ55
DOI:
10.3969/j.issn.1001-8352.2022.05.002
文献标志码:
A
摘要:
为了提高六硝基六氮杂异伍兹烷(CL-20)基温压炸药的能量水平和安全性能,通过分析温压炸药爆炸反应历程,开展了CL-20基压装型温压炸药的设计及性能研究。结果表明:CL-20基压装型温压炸药装药密度2.015 g/cm3、爆热8 361 kJ/kg、爆速7 815 m/s,30 kg炸药爆炸时在远场12 m处的冲击波超压可对人员达到中度以上的毁伤;且其撞击感度8%,摩擦感度24%;在慢速烤燃、快速烤燃、12.7 mm子弹撞击试验中,炸药响应等级均为燃烧反应,爆轰性能和安全性能优异。
Abstract:
In order to improve the energy density and safety performance of hexanitrohexaazaisowurtzitane (CL-20) based thermobaric explosive, design and performance research of CL-20 based pressed thermobaric explosive were carried out by analyzing the detonation reaction course. Results show that charge density of CL-20 based pressed thermobaric explosive is 2.015 g/cm3, measured detonation heat is 8 361 kJ/kg, detonation velocity is 7 815 m/s, and the shock wave overpressure at 12 m in the far field could damage personnel more than moderately. Additionally, its impact sensitivity is 8%, and friction sensitivity is 24%. The response level in fast cook-off test, slow cook-off test and 12.7 mm bullet impact test are all combustion. So the detonation performance and safety performance are excellent.

参考文献/References:

[1]WILDEGGER-GAISSMAIER A E.Aspects of thermobaric weaponry[J].Military Technology,2004,28(6):125-126.
[2]王晓峰, 冯晓军. 温压炸药设计原则探讨[J]. 含能材料, 2016, 24(5): 418-420.
WANG X F, FENG X J. Discussion on the design principles of thermobaric explosives[J]. Chinese Journal of Energetic Materials, 2016, 24(5): 418-420.
[3]朴忠杰, 张爱娥, 罗宇, 等. 铝粉粒度对奥克托今基空爆温压炸药能量释放的影响[J]. 兵工学报, 2019, 40(6): 1190-1197.
PIAO Z J, ZHANG A E, LUO Y, et al. Influence of aluminum powder on energy release of HMX-based air-blast thermobaric explosives[J]. Acta Armamentarii, 2019, 40(6): 1190-1197.
[4]王明烨, 韩志伟, 李席, 等. 铝粉粒径对温压炸药爆炸性能及热安定性的影响[J]. 高压物理学报, 2018, 32(3): 107-114.
WANG M Y, HAN Z W, LI X, et al. Influence of aluminum particle size on explosion performance and thermal stability of thermobaric explosive[J]. Chinese Journal of High Pressure Physics, 2018, 32(3): 107-114.
[5]NIELSEN A T, CHAFIN A P, CHRISTIAN S L, et al. Synthesis of polyazapolycyclic caged polynitramines [J]. Tetrahedron, 1998, 54(39): 11793-11812.
[6]GEETHA M, NAIR U R, SARWADE D B, et al. Studies on CL-20: the most powerful high energy material[J]. Journal of Thermal Analysis and Calorimetry, 2003, 73(3): 913-922.
[7]CHOSH M, VENKATESAN V, SIKDER N, et al. Quantitative analysis of α-CL-20 polymorphic impurity in ε-CL-20 using dispersive raman spectroscopy [J]. Central European Journal of Energetic Materials, 2013, 10(3): 419-438.
[8]欧育湘, 刘进全. 高能量密度化合物[M]. 北京: 国防工业出版社, 2005: 11-12.
OU Y X, LIU J Q. High energy density compound[M]. Beijing: National Defense Industry Press, 2005: 11-12.
[9]SIMPSON R L, URTIEW P A, ORNELLAS D L, et al. CL-20 performance exceeds that of HMX and its sensitivity is moderate[J].Propellants, Explosives, Pyrotechnics,1997, 22(5): 249-255.
[10]欧育湘, 孟征, 刘进全. 高能量密度化合物CL-20应用研究进展[J]. 化工进展, 2007, 26(12): 1690-1694.
OU Y X, MENG Z, LIU J Q. Review of the development of application technologies of CL20[J]. Chemical Industry and Engineering Progress, 2007, 26(12): 1690-1694.
[11]宋振伟, 李笑江. 高能量密度化合物HNIW的最新研究进展及其应用前景[J]. 化学推进剂与高分子材料, 2011, 9(1): 40-45, 60.
SONG Z W, LI X J. Recent research progress and application prospect of high energy density compound HNIW[J]. Chemical Propellants & Polymeric Materials, 2011, 9(1): 40-45,?60.
[12]NAIR U R, SIVABALAN R, GORE G M, et al. Hexanitrohexaazaisowurtzitane (CL-20) and CL-20-based formulations (review)[J]. Combustion Explosion & Shock Waves, 2005, 41(2): 121-132.
[13]LOUIS C, SCOTT H, ANDREW S, et al. Development of alternate process for the synthesis of CL-20[C]//Proceedings of 32nd International Annual Conference of ICT. Karlsruhe, DE: Fraunhofer ICT, 2001: 108-117.
[14]CHIQUETE C, JACKSON S I. Detonation performance of the CL-20-based explosive LX-19[J]. Proceedings of the Combustion Institute, 2021, 38(3):3661-3669.
[15]DONALD A, GEISS J. Additional characterization of high performance CL-20 formulation [C]//Proceedings of 30th International Annual Conference of ICT. Karlsruhe, DE: Fraunhofer ICT, 1999: 167-180.
[16]BALAS W, NICOLICH S, CAPELLOS C. CL-20 PAX explosives formulation development, characterization, and testing[C]//NDIA 2003 IM/EM Technology Symposium. Miami, FL, US, 2003: 181-185.
[17]王昕, 彭翠枝. 国外六硝基六氮杂异伍兹烷的发展现状[J]. 火炸药学报, 2007, 30(5): 45-48, 87.
WANG X, PENG C Z. Development of Hexanitrohexaazaisowurtaitane at abroad[J]. Chinese Journal of Explosives & Propellants, 2007, 30(5): 45-48, 87.
[18]COOK M A, FILLER A S, KEYES R T. Aluminized explosives[J]. The Journal of Physical Chemistry, 1957, 61(2): 189-196.
[19]高旭东, 郭敏, 孙韬, 等.炮射温压弹对人员目标的毁伤效能研究[J]. 弹箭与制导学报, 2011, 31(3): 123-125, 128.
GAO X D, GUO M, SUN T, et al. The damage efficiency research on cannon thermobaric ammunition to personnel target[J]. Journal of Projectiles,Rockets,Missiles and Guidance, 2011, 31(3): 123-125, 128.

相似文献/References:

[1]李鸿宾,王建灵,张为鹏,等.铝粉比表面积与质量分数对浆状温压炸药爆炸冲击波影响的实验研究[J].爆破器材,2013,42(01):5.[doi:10.3969/j.issn.1001-8352.2013.01.002]
 LI Hongbin,WANG Jianling,ZHANG Weipeng,et al.Experiment Study on the Effect of Specific Surface Area and Content of Aluminum Powder on Shock Wave Output of Slurry TBE[J].EXPLOSIVE MATERIALS,2013,42(05):5.[doi:10.3969/j.issn.1001-8352.2013.01.002]
[2]金朋刚,王晓峰,郭炜,等.温压炸药爆炸释热特性研究[J].爆破器材,2014,43(03):1.[doi:10.3969/j.issn.1001-8352.2014.03.001]
 JIN Penggang,WANG Xiaofeng,GUO Wei,et al.Research on the Heat Release Characters of TBX Explosion[J].EXPLOSIVE MATERIALS,2014,43(05):1.[doi:10.3969/j.issn.1001-8352.2014.03.001]
[3]韩早,王伯良,李席.全密闭空间内温压炸药的冲击波参数试验研究[J].爆破器材,2015,44(01):20.[doi:10.3969/j.issn.1001-8352.2015.01.005]
 HAN Zao,WANG Boliang,LI Xi.Experimental Study on Shock Wave Parameters of Thermobaric Explosive in Fully Enclosed Space[J].EXPLOSIVE MATERIALS,2015,44(05):20.[doi:10.3969/j.issn.1001-8352.2015.01.005]
[4]张玉磊,翟红波,李芝绒,等.TNT和温压炸药的爆炸火球表面温度对比试验研究[J].爆破器材,2015,44(05):23.[doi:10.3969/j.issn.1001-8352.2015.05.006]
 ZHANG Yulei,ZHAI Hongbo,LI Zhirong,et al.Experimental Research on the Contrast of the Fireball’s Surface Temperature of TNT and Thermobaric Explosive[J].EXPLOSIVE MATERIALS,2015,44(05):23.[doi:10.3969/j.issn.1001-8352.2015.05.006]
[5]李宏伟,郭婉肖,王茂,等.高速撞击下温压炸药的响应敏感性[J].爆破器材,2020,49(05):7.[doi:doi:10.3969/j.issn.1001-8352.2020.05.002]
 LI Hongwei,GUO Wanxiao,WANG Mao,et al.Response Sensitivity of Thermobaric Explosive under High-speed Impact[J].EXPLOSIVE MATERIALS,2020,49(05):7.[doi:doi:10.3969/j.issn.1001-8352.2020.05.002]
[6]王闯,李亚宁,李建,等.装药量对温压炸药爆炸毁伤威力的影响[J].爆破器材,2023,52(04):37.[doi:10.3969/j.issn.1001-8352.2023.04.006]
 WANG Chuang,LI Yaning,LI Jian,et al.The Influence of Charge Quantity on the Explosion Damage Power of Thermobaric Explosives[J].EXPLOSIVE MATERIALS,2023,52(05):37.[doi:10.3969/j.issn.1001-8352.2023.04.006]

备注/Memo

备注/Memo:
收稿日期:2022-07-14
基金项目:国家自然科学基金(11772058)
第一作者:张磊(1978-),男,高工,主要从事爆炸力学的研究。E-mail:10342039@qq.com
通信作者:郭学永(1975-),男,教授,博导,主要从事混合炸药配方设计及其应用技术研究。E-mail:nust@bit.edu.com
更新日期/Last Update: 2022-10-04