[1]汪成运,魏志丰,何鹏鹏.炸药殉爆的研究进展与展望[J].爆破器材,2022,51(06):1-8.[doi:10.3969/j.issn.1001-8352.2022.06.001]
 WANG Chengyun,WEI Zhifeng,HE Pengpeng.Research Progress of Sympathetic Detonation of Explosives[J].EXPLOSIVE MATERIALS,2022,51(06):1-8.[doi:10.3969/j.issn.1001-8352.2022.06.001]
点击复制

炸药殉爆的研究进展与展望()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
51
期数:
2022年06
页码:
1-8
栏目:
基础理论
出版日期:
2022-11-25

文章信息/Info

Title:
Research Progress of Sympathetic Detonation of Explosives
文章编号:
5743
作者:
汪成运魏志丰何鹏鹏
中国五洲工程设计集团有限公司(北京,100053)
Author(s):
WANG Chengyun WEI Zhifeng HE Pengpeng
China Wuzhou Engineering Group Co., Ltd. (Beijing, 100053)
关键词:
炸药殉爆主发装药被发装药殉爆距离数值模拟
Keywords:
explosive sympathetic detonation donor charge acceptor charge sympathetic detonation distance numerical simulation
分类号:
TJ01;TJ55
DOI:
10.3969/j.issn.1001-8352.2022.06.001
文献标志码:
A
摘要:
炸药是一种在外界激发能量刺激下会反应爆炸并对周围介质做功的物质。因其威力巨大,毁伤效应显著,在武器系统和爆破工程领域得到了广泛应用。殉爆是一炸药被附近另一炸药爆炸引爆的现象。殉爆限制了炸药的生产和储存,不利于大规模应用,因而炸药殉爆成为近年来的研究热点。从炸药殉爆机理、殉爆主要影响因素、殉爆距离测定方法、殉爆距离计算公式和殉爆数值模拟5个方面介绍了炸药殉爆的研究进展;最后,从与实际情况相符性、防殉爆措施研究、与安全规范相符性和数值模拟4个方面对炸药殉爆研究提出了展望。建议提高殉爆研究中主、被发装药数量级,采用多种炸药形态,考虑多种殉爆惰性介质和殉爆影响因素,研究防殉爆措施,将殉爆研究与工程安全设计需求相结合,构建多热点耦合本构模型。
Abstract:
Explosive is a substance that responds to the explosion and performs work to the surrounding medium under the stimulation of external excitation energy. It has been widely used in the field of weapon system and blasting engineering due to its huge power and significant destructive effect. Sympathetic detonation is the phenomenon that one explosive is detonated by another explosive nearby. The existence of sympathetic detonation limits the manufacture and storage of explosives and it is not conducive to large-scale application of explosives. So sympathetic detonation has become a research hotspot in recent years. Developments of the research on sympathetic detonation of explosives were introduced from five aspects:mechanisms of sympathetic detonation, main influencing factors of sympathetic detonation, measurement methods of sympathetic detonation distance, calculation formula of sympathetic detonation distance, and the numerical simulation of sympathetic detonation. Finally, the prospect of the subsequent research on sympathetic detonation of explosives was put forward from four aspects: consistency with the actual situation, research on anti-sympathetic detonation, consistency with safety specifications and numerical simulation. It was suggested to increase the number of donor charge and acceptor charge, adopt various explosive forms, consider various inert media and influencing factors of sympathetic detonation, study anti-sympathetic detonation measures, combine sympathetic detonation study with requirements of engineering safety design, and construct multi-hotspot coupling constitutive models.

参考文献/References:

[1]王玉杰. 爆破工程[M]. 武汉: 武汉理工大学出版社,2007: 20-22.
WANG Y J. Blasting Engineering [M]. Wuhan: Wuhan University of Technology Press, 2007: 20-22.
[2]CAMPELL A W, DAVIS W G, TRAVIS J R. Shock initiation of detonation in liquid explosives [J]. Physics of Fluids, 1961, 4(4): 498-510.
[3]王泽溥, 郑志良. 爆炸及其防护[M]. 北京: 兵器工业出版社, 2008: 138-163.
WANG Z B, ZHENG Z L. Explosion and its protection [M]. Beijing: Ordnance Industry Press, 2008: 138-163.
[4]FREY R B. Cavity collapse in energetic materials: BRL-TR 2748[R].Maryland: Ballistic Research Laboratory. 1985:68-80.
[5]BARUA A,ZHOU M. Computational analysis of tempera-ture rises in microstructures of HMX-estane PBXs [J]. Computional Mechanics, 2013, 52(1): 151-159.
[6] BOURNE N K, MILNE A M.The temperature of a shock-collapsed cavity [J]. Proceedings of the Royal Society A, 2003, 459: 1851-1861.
[7]DERIBAS A A, MEDVEDEV A E, RESHETNYAK A Y,et al. Detonation of emulsion explosives containing hollow microspheres [J].Doklady Physics, 2003, 48(4): 163-165.
[8]ZHOU T, LOU J, ZHANG Y, et al. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large scale reactive molecular dynamics study [J]. Physical Chemistry Chemical Physics, 2016,18(26): 17627-17645.
[9]BONNETT D L,BUTIER P B. Hot spot ignition of condensed phase energetic materials [J]. Jounal of Propulsion and Power, 2012, 12(4): 680-690.
[10]陆明. 工业炸药配方设计[M]. 北京: 北京理工大学出版社, 2002: 155-156.
LU M. Formulation design of industrial explosive [M]. Beijing: Beijing Institute of Technology Press, 2002:155-156.
[11]刘连生, 胡勇辉. 水分含量对改性铵油炸药性能的影响[J]. 工程爆破, 2012, 18(1): 86-90, 39.
LIU L S, HU Y H. Effect of moisture content on MANFO performance[J]. Engineering Blasting, 2012, 18 (1): 86-90, 39.
[12]沈斌, 肖代军. 影响MRB型II号岩石乳化炸药殉爆探讨[J].煤矿爆破, 2013(2): 33-36.
SHEN B, XIAO D J. Discussion on the factors influencing the induced detonation of MRB type 2# rock emulsion explosive [J]. Coal Mine Blasting, 2013(2): 33-36.
[13]孙德勇, 冯玉明, 唐友生. 防止炸药装药和皮带输送药卷时发生传爆和殉爆的防范措施探讨[J]. 安全,2010, 31(4): 5-8.
[14]施维, 吴红波, 夏曼曼, 等.乳化炸药药卷放置方式对殉爆距离的影响[J].淮南职业技术学院学报, 2018,18(5): 3-4.
[15]国家技术监督局. 工业粉状铵梯炸药试验方法: GB/T 12438—1990[S]. 1990.
CSBTS (State Bureau of Technical Supervision). Test method for industrial powdery explosives contained ammonium nitrate and trinitrotoluene: GB/T 12438—1990[S]. 1990.
[16]中国兵器工业标准研究所. 工业炸药殉爆距离试验方法: WJ/T 9055-2006[S]. 2006.
China Ordnance Industry Standardization Research Institute. Test method of transmission distance for industrial explosive: WJ/T 9055-2006[S]. 2006.
[17]倪欧琪, 丁云. 工业炸药实验室殉爆距离测试方法改进的建议[J]. 爆炸与冲击, 1997, 17(3): 272-275.
NI O Q, DING Y. Suggestions for the improvement of laboratory testing method of gap distance on industrial explosives [J]. Explosion and Shock Waves, 1997,17 (3): 272-275.
[18]汪旭光. 乳化炸药[M].2版. 北京: 冶金工业出版社, 2008: 806-807.
WANG X G. Emulsion explosives [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2008: 806-807.
[19]李仕洪, 李建设, 刘顺强. 浅析工业炸药殉爆距离试验方法的改进[J]. 爆破器材, 2005, 34(3): 13-16.
LI S H, LI J S, LIU S Q. Innovation of testing methods of gap distances on industrial explosive [J]. Explosive Materials, 2005, 34(3): 13-16.
[20]罗晓碧, 尚力, 俞蓉, 等. 用纸管悬吊法测试炸药殉爆距离在生产中的应用[J]. 爆破器材, 2008, 37(6): 11-14.
LUO X B, SHANG L, YU R, et al. Application of transission distance testing of explosives by paper-tuber-hanging-up method [J]. Explosive Materials, 2008,37 (6): 11-14.
[21]苏联部长会议国家矿山监察总局.爆破作业统一安全规程[M].北京: 燃料工业出版社, 1955: 172-173.
[22]李铮,项续章,郭梓熙.各种炸药的殉爆安全距离[J]. 爆炸与冲击, 1994, 14(3): 231-241.
LI Z, XIANG X Z, GUO Z X. Various explosives of safety distance of unsympathetic detonation[J]. Explosion and Shock Waves, 1994,14 (3): 231-241.
[23]格普塔,周叔良.药包间安全殉爆距离的确定方法[J].国外金属矿山,1989 (5): 76-82, 58.
[24]张福宏. 炸药药卷在炮眼中殉爆距离计算经验式的建立[J]. 隧道建设, 2003, 23(2): 7-9.
[25]MADER C L, FOREST C A. Twodimensional homogeneous and heterogeneous detonation wave propagation[J]. Chemical Explosives, 1976: 77.
[26]JOHNSON J N,TANG P K, FOREST C A. Shock-wave initiation of heterogeneous reactive solids [J]. Journal of Applied Physics, 1985, 57(9): 4323-4334.
[27]IFE E L,TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. Physics of Fluids, 1980, 23(12): 2362-2372.
[28]KURY J W. Metal acceleration by chemical explosive[C]//Proceeding of the 4th Symposium (International) on Detonation. Washington, US: Office of Naval Research, 1965.
[29]WALKER F E, WASLEY R J. Critical energy for the shock initiation of heterogeneous explosives [J]. Explosive Stoffe, 1969, 17(1): 9-13.
[30]FOAN G C M, COLEY G D. Shock initiation in gap test configurations[C]//7th Symposium on Detonation. Annapolis, MD, US: Naval Surface Weapons Center,1981: 278-284.
[31]JAMES H R. An extension to the critical energy criterion used to predict shock initiation thresholds [J]. Propellants, Explosives, Pyrotechnics, 1996, 21(1): 8-13.
[32]KIM S, MILLER C, HORIE Y, et al. Computational prediction of probabilistic ignition threshold of pressed granular octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) under shock loading [J]. Journal of Applied Physics, 2016, 120(11): 734-744.
[33]KIM B, KIM M, SUN T, et al. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations [J]. Journal of Mechanical Science and Technology, 2016, 30(12): 5491-5502.
[34]KO Y H, KIM S J, YANG H S. Assessment for the sympathetic detonation characteristics of underwater shaped charge [J]. Geosystem Engineering, 2017, 20(5): 286-293.
[35]陈朗, 王晨, 鲁建英, 等. 炸药殉爆实验和数值模拟[J]. 北京理工大学学报, 2009, 29(6): 497-500, 524.
CHEN L, WANG C, LU J Y, et al. Experiment & simulation of sympathetic detonation tests [J]. Transactions of Beijing Institute of Technology, 2009, 29(6): 497-500, 524.
[36]张立建, 沈飞, 畅博, 等. 典型相似结构柱壳装药殉爆响应数值模拟[J]. 科学技术与工程, 2021, 21(3): 1003-1010.
ZHANG L J, SHEN F, CHANG B, et al. Numerical simulation of the sympathetic detonation response of cylindrical shell charge with typical similar structures [J]. Science Technology and Engineering, 2021, 21(3): 1003-1010.
[37]CHEN L, WANG C, FENG C G, et al. Study on random initiation phenomenon for sympathetic detonation of explosive[J]. Defence Technology, 2013, 9 (4): 224-228.
[38]王晨, 伍俊英, 陈朗, 等. 壳装炸药殉爆实验和数值模拟[J]. 爆炸与冲击, 2010, 30(2): 152-158.
WANG C, WU J Y, CHEN L, et al. Experiments and numerical simulations of sympathetic detonation of explosives in shell [J]. Explosion and Shock Waves, 2010, 30(2): 152-158.
[39]周保顺, 王少龙, 徐明利, 等. 非均质炸药殉爆试验数值模拟[J]. 弹箭与制导学报, 2009, 29(5): 145-148.
ZHOU B S, WANG S L, XU M L, et al. Numerical simulation of sympathetic detonation of heterogeneous condensed explosives[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(5): 145-148.
[40]KUBOTA S, LIU Z Y, OTSUKI M, et al. A numerical study of sympathetic detonation in gap test [C]//1st International Symposium on Exposion, Shock Wave and Hypervelocity Phenomena (ESHP Symposium). Kumamoto, JPN, 2004: 163-168.
[41]姜颖资, 王伟力, 黄雪峰, 等. 带壳炸药在高速运动炸药作用下殉爆效应研究[J]. 工程爆破, 2014, 20(3): 1-4.
JIANG Y Z, WANG W L, HUANG X F, et al. Research on the sympathetic detonation effect of shelled explosive by high-speed movement explosive[J]. Engineering Blasting, 2014, 20(3): 1-4.
[42]陈兴旺, 王金相, 唐奎, 等. 近场爆炸冲击波对屏蔽压装TNT的冲击引爆试验和仿真[J]. 高压物理学报, 2019, 33(1): 125-132.
CHEN X W, WANG J X, TANG K, et al. Experimental and numerical study of shock initiation of covered TNT by near-field shock wave [J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 125-132.
[43]李兴隆, 吴奎先, 路中华, 等. 叠层复合装药殉爆安全性试验及数值模拟[J]. 含能材料, 2022, 30(3): 204-213.
LI X L, WU K X, LU Z H, et al. Sympathetic detonation test and simulation of laminated composite charge[J]. Chinese Journal of Energetic Materials, 2022, 30(3): 204-213.
[44]ITOH S, HAMADA T, MURATA K, et al. Visualization of underwater sympathetic detonation of high explosives [J]. KSME International Journal, 2001, 15(12): 1822-1828.
[45]KUBOTA S, SABURI T, NAGAYAMA K, et al. Underwater sympathetic detonation of pellet explosive [J]. Shock Compression of Condensed Matter, 2018, 1979: 1-5.
[46]KUBOTA S, OGATA Y, WADA Y, et al. Observations of shock-induced partial reactions in high explosive [J]. Shock Compression of Condensed Matter, 2007, 955: 955-958.
[47]KUBOTA S, SHIMADA H, MATSUI K, et al. High-speed photography of underwater sympathetic detonation of high explosives [C]//24th International Congress on High-Speed Photography and Photonics. Semdai, JPN, 2001, 4183: 763-770.
[48]中国兵器工业集团公司. 民用爆炸物品工程设计安全标准: GB 50089-2018[S]. 中国计划出版社,2018-07-10.
[49]国家国防科技工业局. 军工燃烧爆炸品工程设计安全规范: WJ 30059—2021[S]. 2021-04-25.

相似文献/References:

[1]常新岩,郁刚,徐鸿儒,等.无源自动水喷淋系统[J].爆破器材,2010,39(01):29.
 CHANG Xinyan,YU Gang,XU Hongru,et al.Automatic Water Spray System without Power[J].EXPLOSIVE MATERIALS,2010,39(06):29.
[2]解立峰,韩志伟,王海洋,等.民用炸药敏感度试验方法的研究与探讨[J].爆破器材,2011,40(02):8.
 XIE Lifeng,HAN Zhiwei,WANG Haiyang,et al.The Study of Sensitivity Testing Methods of Civil Explosives[J].EXPLOSIVE MATERIALS,2011,40(06):8.
[3]黄寅生,卢志坚.,卢光明.近年民用爆破器材专利特征分析[J].爆破器材,2009,38(05):22.
 HUANG Yinsheng,LU Zhijian.,LU Guangming.Analysis on Resent Patents of Industrial Explosive Materials[J].EXPLOSIVE MATERIALS,2009,38(06):22.
[4]常新岩,谢永言,郑永芬.工业炸药自动包装线的安全性探讨[J].爆破器材,2009,38(01):8.
 CHANG Xinyan,XIE Yongyan,ZHENG Yongfen.Discussion on Safety of Industrial Explosive Automatic Packing Line[J].EXPLOSIVE MATERIALS,2009,38(06):8.
[5]张袁斌,陈文靖,叶志文.N2O5/HNO3体系硝解三(N-乙酰基)六氢化均三嗪制备RDX[J].爆破器材,2012,41(04):9.
 ZHANG Yuanbin,CHEN Wenjing,YE Zhiwen.Preparation of RDX by Nitrolysis of 1,3,5-Triacetyl Hexahydro-1,3,5-Triazaine with N2O5/HNO3[J].EXPLOSIVE MATERIALS,2012,41(06):9.
[6]黄亚峰,王晓峰,王红星,等.火炸药双螺杆挤出工艺的研究现状与发展[J].爆破器材,2013,42(04):41.[doi:10.3969/j.issn.1001-8352.2013.04.010]
 HUANG Yafeng,WANG Xiaofeng,WANG Hongxing,et al.Research Status and Development of the Twin Screw Extrusion Technology on the propellants and explosives[J].EXPLOSIVE MATERIALS,2013,42(06):41.[doi:10.3969/j.issn.1001-8352.2013.04.010]
[7]封雪松,徐洪涛,田轩,等.含储氢合金炸药的能量研究[J].爆破器材,2013,42(05):13.[doi:10.3969/j.issn.1001-8352.2013.05.003]
 FENG Xuesong,XU Hongtao,TIAN Xuan,et al.Energy Research of Explosive Containing Hydrogen Storage Alloy[J].EXPLOSIVE MATERIALS,2013,42(06):13.[doi:10.3969/j.issn.1001-8352.2013.05.003]
[8]胡宏伟①,鲁忠宝②,郭炜①,等.水中爆炸的殉爆试验方法[J].爆破器材,2014,43(03):25.[doi:10.3969/j.issn.1001-8352.2014.03.006]
 HU Hongwei,LU Zhongbao,GUO Wei,et al.The Method of Sympathetic Detonation Experiment in Water[J].EXPLOSIVE MATERIALS,2014,43(06):25.[doi:10.3969/j.issn.1001-8352.2014.03.006]
[9]刘艳萍,金大勇,高玉玲,等.DNAN基含铝熔铸炸药倒药方法研究[J].爆破器材,2014,43(05):51.[doi:10.3969/j.issn.1001-8352.2014.05.011]
 LIU Yanping,JIN Dayong,GAO Yuling,et al.Study on the Chargeinverted Method of DNANbased Aluminized Meltcast Explosive[J].EXPLOSIVE MATERIALS,2014,43(06):51.[doi:10.3969/j.issn.1001-8352.2014.05.011]
[10]杨惠,杨建钢,方学谦.支持向量机法预测单质炸药爆速的研究[J].爆破器材,2015,44(02):28.[doi:10.3969/j.issn.1001-8352.2015.02.007]
 YANG Hui,YANG Jiangang,FANG Xueqian.Prediction the Detonating Velocity of Elemental Explosives by Support Vector Machine[J].EXPLOSIVE MATERIALS,2015,44(06):28.[doi:10.3969/j.issn.1001-8352.2015.02.007]

备注/Memo

备注/Memo:
收稿日期:2022-05-08
第一作者:汪成运(1987- ),男,硕士,高工,主要从事火炸药工程设计。E-mail:wchycan@126.com
通信作者:魏志丰(1971- ),男,研究员级高工,主要从事火炸药工程设计。E-mail:13501312601@139.com
更新日期/Last Update: 2022-11-18