[1]王玉杰. 爆破工程[M]. 武汉: 武汉理工大学出版社,2007: 20-22.
WANG Y J. Blasting Engineering [M]. Wuhan: Wuhan University of Technology Press, 2007: 20-22.
[2]CAMPELL A W, DAVIS W G, TRAVIS J R. Shock initiation of detonation in liquid explosives [J]. Physics of Fluids, 1961, 4(4): 498-510.
[3]王泽溥, 郑志良. 爆炸及其防护[M]. 北京: 兵器工业出版社, 2008: 138-163.
WANG Z B, ZHENG Z L. Explosion and its protection [M]. Beijing: Ordnance Industry Press, 2008: 138-163.
[4]FREY R B. Cavity collapse in energetic materials: BRL-TR 2748[R].Maryland: Ballistic Research Laboratory. 1985:68-80.
[5]BARUA A,ZHOU M. Computational analysis of tempera-ture rises in microstructures of HMX-estane PBXs [J]. Computional Mechanics, 2013, 52(1): 151-159.
[6] BOURNE N K, MILNE A M.The temperature of a shock-collapsed cavity [J]. Proceedings of the Royal Society A, 2003, 459: 1851-1861.
[7]DERIBAS A A, MEDVEDEV A E, RESHETNYAK A Y,et al. Detonation of emulsion explosives containing hollow microspheres [J].Doklady Physics, 2003, 48(4): 163-165.
[8]ZHOU T, LOU J, ZHANG Y, et al. Hot spot formation and chemical reaction initiation in shocked HMX crystals with nanovoids: a large scale reactive molecular dynamics study [J]. Physical Chemistry Chemical Physics, 2016,18(26): 17627-17645.
[9]BONNETT D L,BUTIER P B. Hot spot ignition of condensed phase energetic materials [J]. Jounal of Propulsion and Power, 2012, 12(4): 680-690.
[10]陆明. 工业炸药配方设计[M]. 北京: 北京理工大学出版社, 2002: 155-156.
LU M. Formulation design of industrial explosive [M]. Beijing: Beijing Institute of Technology Press, 2002:155-156.
[11]刘连生, 胡勇辉. 水分含量对改性铵油炸药性能的影响[J]. 工程爆破, 2012, 18(1): 86-90, 39.
LIU L S, HU Y H. Effect of moisture content on MANFO performance[J]. Engineering Blasting, 2012, 18 (1): 86-90, 39.
[12]沈斌, 肖代军. 影响MRB型II号岩石乳化炸药殉爆探讨[J].煤矿爆破, 2013(2): 33-36.
SHEN B, XIAO D J. Discussion on the factors influencing the induced detonation of MRB type 2# rock emulsion explosive [J]. Coal Mine Blasting, 2013(2): 33-36.
[13]孙德勇, 冯玉明, 唐友生. 防止炸药装药和皮带输送药卷时发生传爆和殉爆的防范措施探讨[J]. 安全,2010, 31(4): 5-8.
[14]施维, 吴红波, 夏曼曼, 等.乳化炸药药卷放置方式对殉爆距离的影响[J].淮南职业技术学院学报, 2018,18(5): 3-4.
[15]国家技术监督局. 工业粉状铵梯炸药试验方法: GB/T 12438—1990[S]. 1990.
CSBTS (State Bureau of Technical Supervision). Test method for industrial powdery explosives contained ammonium nitrate and trinitrotoluene: GB/T 12438—1990[S]. 1990.
[16]中国兵器工业标准研究所. 工业炸药殉爆距离试验方法: WJ/T 9055-2006[S]. 2006.
China Ordnance Industry Standardization Research Institute. Test method of transmission distance for industrial explosive: WJ/T 9055-2006[S]. 2006.
[17]倪欧琪, 丁云. 工业炸药实验室殉爆距离测试方法改进的建议[J]. 爆炸与冲击, 1997, 17(3): 272-275.
NI O Q, DING Y. Suggestions for the improvement of laboratory testing method of gap distance on industrial explosives [J]. Explosion and Shock Waves, 1997,17 (3): 272-275.
[18]汪旭光. 乳化炸药[M].2版. 北京: 冶金工业出版社, 2008: 806-807.
WANG X G. Emulsion explosives [M]. 2nd ed. Beijing: Metallurgical Industry Press, 2008: 806-807.
[19]李仕洪, 李建设, 刘顺强. 浅析工业炸药殉爆距离试验方法的改进[J]. 爆破器材, 2005, 34(3): 13-16.
LI S H, LI J S, LIU S Q. Innovation of testing methods of gap distances on industrial explosive [J]. Explosive Materials, 2005, 34(3): 13-16.
[20]罗晓碧, 尚力, 俞蓉, 等. 用纸管悬吊法测试炸药殉爆距离在生产中的应用[J]. 爆破器材, 2008, 37(6): 11-14.
LUO X B, SHANG L, YU R, et al. Application of transission distance testing of explosives by paper-tuber-hanging-up method [J]. Explosive Materials, 2008,37 (6): 11-14.
[21]苏联部长会议国家矿山监察总局.爆破作业统一安全规程[M].北京: 燃料工业出版社, 1955: 172-173.
[22]李铮,项续章,郭梓熙.各种炸药的殉爆安全距离[J]. 爆炸与冲击, 1994, 14(3): 231-241.
LI Z, XIANG X Z, GUO Z X. Various explosives of safety distance of unsympathetic detonation[J]. Explosion and Shock Waves, 1994,14 (3): 231-241.
[23]格普塔,周叔良.药包间安全殉爆距离的确定方法[J].国外金属矿山,1989 (5): 76-82, 58.
[24]张福宏. 炸药药卷在炮眼中殉爆距离计算经验式的建立[J]. 隧道建设, 2003, 23(2): 7-9.
[25]MADER C L, FOREST C A. Twodimensional homogeneous and heterogeneous detonation wave propagation[J]. Chemical Explosives, 1976: 77.
[26]JOHNSON J N,TANG P K, FOREST C A. Shock-wave initiation of heterogeneous reactive solids [J]. Journal of Applied Physics, 1985, 57(9): 4323-4334.
[27]IFE E L,TARVER C M. Phenomenological model of shock initiation in heterogeneous explosives [J]. Physics of Fluids, 1980, 23(12): 2362-2372.
[28]KURY J W. Metal acceleration by chemical explosive[C]//Proceeding of the 4th Symposium (International) on Detonation. Washington, US: Office of Naval Research, 1965.
[29]WALKER F E, WASLEY R J. Critical energy for the shock initiation of heterogeneous explosives [J]. Explosive Stoffe, 1969, 17(1): 9-13.
[30]FOAN G C M, COLEY G D. Shock initiation in gap test configurations[C]//7th Symposium on Detonation. Annapolis, MD, US: Naval Surface Weapons Center,1981: 278-284.
[31]JAMES H R. An extension to the critical energy criterion used to predict shock initiation thresholds [J]. Propellants, Explosives, Pyrotechnics, 1996, 21(1): 8-13.
[32]KIM S, MILLER C, HORIE Y, et al. Computational prediction of probabilistic ignition threshold of pressed granular octahydro-1,3,5,7-tetranitro-1,2,3,5-tetrazocine (HMX) under shock loading [J]. Journal of Applied Physics, 2016, 120(11): 734-744.
[33]KIM B, KIM M, SUN T, et al. Simulating sympathetic detonation using the hydrodynamic models and constitutive equations [J]. Journal of Mechanical Science and Technology, 2016, 30(12): 5491-5502.
[34]KO Y H, KIM S J, YANG H S. Assessment for the sympathetic detonation characteristics of underwater shaped charge [J]. Geosystem Engineering, 2017, 20(5): 286-293.
[35]陈朗, 王晨, 鲁建英, 等. 炸药殉爆实验和数值模拟[J]. 北京理工大学学报, 2009, 29(6): 497-500, 524.
CHEN L, WANG C, LU J Y, et al. Experiment & simulation of sympathetic detonation tests [J]. Transactions of Beijing Institute of Technology, 2009, 29(6): 497-500, 524.
[36]张立建, 沈飞, 畅博, 等. 典型相似结构柱壳装药殉爆响应数值模拟[J]. 科学技术与工程, 2021, 21(3): 1003-1010.
ZHANG L J, SHEN F, CHANG B, et al. Numerical simulation of the sympathetic detonation response of cylindrical shell charge with typical similar structures [J]. Science Technology and Engineering, 2021, 21(3): 1003-1010.
[37]CHEN L, WANG C, FENG C G, et al. Study on random initiation phenomenon for sympathetic detonation of explosive[J]. Defence Technology, 2013, 9 (4): 224-228.
[38]王晨, 伍俊英, 陈朗, 等. 壳装炸药殉爆实验和数值模拟[J]. 爆炸与冲击, 2010, 30(2): 152-158.
WANG C, WU J Y, CHEN L, et al. Experiments and numerical simulations of sympathetic detonation of explosives in shell [J]. Explosion and Shock Waves, 2010, 30(2): 152-158.
[39]周保顺, 王少龙, 徐明利, 等. 非均质炸药殉爆试验数值模拟[J]. 弹箭与制导学报, 2009, 29(5): 145-148.
ZHOU B S, WANG S L, XU M L, et al. Numerical simulation of sympathetic detonation of heterogeneous condensed explosives[J]. Journal of Projectiles, Rockets, Missiles and Guidance, 2009, 29(5): 145-148.
[40]KUBOTA S, LIU Z Y, OTSUKI M, et al. A numerical study of sympathetic detonation in gap test [C]//1st International Symposium on Exposion, Shock Wave and Hypervelocity Phenomena (ESHP Symposium). Kumamoto, JPN, 2004: 163-168.
[41]姜颖资, 王伟力, 黄雪峰, 等. 带壳炸药在高速运动炸药作用下殉爆效应研究[J]. 工程爆破, 2014, 20(3): 1-4.
JIANG Y Z, WANG W L, HUANG X F, et al. Research on the sympathetic detonation effect of shelled explosive by high-speed movement explosive[J]. Engineering Blasting, 2014, 20(3): 1-4.
[42]陈兴旺, 王金相, 唐奎, 等. 近场爆炸冲击波对屏蔽压装TNT的冲击引爆试验和仿真[J]. 高压物理学报, 2019, 33(1): 125-132.
CHEN X W, WANG J X, TANG K, et al. Experimental and numerical study of shock initiation of covered TNT by near-field shock wave [J]. Chinese Journal of High Pressure Physics, 2019, 33(1): 125-132.
[43]李兴隆, 吴奎先, 路中华, 等. 叠层复合装药殉爆安全性试验及数值模拟[J]. 含能材料, 2022, 30(3): 204-213.
LI X L, WU K X, LU Z H, et al. Sympathetic detonation test and simulation of laminated composite charge[J]. Chinese Journal of Energetic Materials, 2022, 30(3): 204-213.
[44]ITOH S, HAMADA T, MURATA K, et al. Visualization of underwater sympathetic detonation of high explosives [J]. KSME International Journal, 2001, 15(12): 1822-1828.
[45]KUBOTA S, SABURI T, NAGAYAMA K, et al. Underwater sympathetic detonation of pellet explosive [J]. Shock Compression of Condensed Matter, 2018, 1979: 1-5.
[46]KUBOTA S, OGATA Y, WADA Y, et al. Observations of shock-induced partial reactions in high explosive [J]. Shock Compression of Condensed Matter, 2007, 955: 955-958.
[47]KUBOTA S, SHIMADA H, MATSUI K, et al. High-speed photography of underwater sympathetic detonation of high explosives [C]//24th International Congress on High-Speed Photography and Photonics. Semdai, JPN, 2001, 4183: 763-770.
[48]中国兵器工业集团公司. 民用爆炸物品工程设计安全标准: GB 50089-2018[S]. 中国计划出版社,2018-07-10.
[49]国家国防科技工业局. 军工燃烧爆炸品工程设计安全规范: WJ 30059—2021[S]. 2021-04-25.