[1]孙飞①,陈友文②,顾云①,等.PVDF薄膜传感器用于测试块状岩石表面爆炸应力的研究[J].爆破器材,2023,52(03):58-64.[doi:10.3969/j.issn.1001-8352.2023.03.009]
 SUN Fei,CHEN Youwen,GU Yun,et al.Application of PVDF Thin Film Sensor in Explosive Stress Measurement on the Surface of Massive Rock[J].EXPLOSIVE MATERIALS,2023,52(03):58-64.[doi:10.3969/j.issn.1001-8352.2023.03.009]
点击复制

PVDF薄膜传感器用于测试块状岩石表面爆炸应力的研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
52
期数:
2023年03
页码:
58-64
栏目:
爆破技术
出版日期:
2023-06-06

文章信息/Info

Title:
Application of PVDF Thin Film Sensor in Explosive Stress Measurement on the Surface of Massive Rock
文章编号:
5714
作者:
孙飞陈友文顾云刘迪陈顺禄①③丁建
①核工业南京建设集团有限公司(江苏南京,211102)
②浙江省交通投资集团有限公司(浙江杭州,310020)
③南京君缘科爆工程技术有限公司(江苏南京,211103)
④南京理工大学化学与化工学院(江苏南京,210094)
Author(s):
SUN Fei CHEN Youwen GU Yun LIU Di CHEN Shunlu①③ DING Jian
①Nuclear Industry Nanjing Construction Group Co., Ltd. (Jiangsu Nanjing, 211102)
②Zhejiang Communications Investment Group Co., Ltd. (Zhejiang Hangzhou, 310020)
③Nanjing Junyuan Kebao Engineering Technology Co., Ltd. (Jiangsu Nanjing, 211103)
④School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
爆炸力学爆炸应力PVDF薄膜岩石介质
Keywords:
explosive mechanics explosive stress PVDF thin film rock medium
分类号:
TD235
DOI:
10.3969/j.issn.1001-8352.2023.03.009
文献标志码:
A
摘要:
采用PVDF(聚偏二氟乙烯)薄膜传感器对岩石表面爆炸应力进行测量,并分析炮孔内不同填塞介质对爆炸应力波在岩石介质中传播的影响。在直径为28 mm、孔深为25 cm的炮孔内填塞不同的介质(空气、水或沙子),采用不同的装药结构分别进行爆破试验,通过PVDF薄膜传感器得到了不同工况下岩石表面应力波时程曲线。分析炮孔内不同填塞介质对爆炸应力波透射的影响发现,水作为炮孔填塞介质时,爆炸应力波透射能力强,炸药爆炸产生的能量用于岩石破碎的比例高。水作为炮孔填塞介质时,为达到岩石开裂效果,装药结构设计为1发8#雷管加2 g传爆药(聚黑-14);当沙子作为炮孔填塞介质时,为达到岩石的开裂效果,装药结构设计为1发8#雷管、2 g传爆药(聚黑-14)和20 g炸药(聚黑-2);前者炸药用量仅为后者的15.3%。炸药使用量减少,也降低了爆破次生危害的影响程度。用PVDF薄膜传感器在岩石表面直接测量爆炸应力的方法是可行的。
Abstract:
PVDF (polyvinylidene fluoride) thin film sensor was used to measure explosive stress on the surface of rocks, and the influences of different filling media in the blast hole on the propagation of explosive stress waves in rock media were analyzed. Different media, such as air, water, or sand, were filled into the borehole with a diameter of 28 mm and a depth of 25 cm. Blasting tests were conducted using different charging structures, and the time history curves of rock surface stress waves under different working conditions were obtained from PVDF. It was found that when water is used as the filling medium in the blast hole, the transmission ability of explosion stress waves is strong, and the proportion of energy generated by explosion used for rock fragmentation is high. When water is used as the filling medium in the blast hole, in order to achieve rock cracking, the charging structure is designed with one 8# detonator and 2 g booster explosive (Juhei-14). When sand is used as the filling medium in the blast hole, in order to achieve rock cracking, the charging structure is designed with one 8# detonator, 2 g booster explosive (Juhei-14), and 20 g of explosive (Juhei-2). The amount of explosives used in the former is only 15.3% of that in the latter. The reduction in the use of explosives also reduces the impact of secondary hazards caused by blasting. The method of directly measuring explosive stress on rock surface using PVDF thin film sensors is feasible.

参考文献/References:

[1]KAWAI H. The piezoelectricity of poly (vinylidene fluoride) [J]. Japanese Journal of Applied Physics, 1969, 8(7): 975.
[2]余尚江, 曾辉, 丁世敬, 等. PVDF土压力传感器[J]. 传感器技术, 2003, 22(9):16-18.
YU S J, ZENG H, DING S J, et al. PVDF soil pressure sensor [J]. Journal of Transducer Technology, 2003, 22(9): 16-18.
[3]刘剑飞, 胡时胜. PVDF压电计在低阻抗介质动态力学性能测试中的应用[J]. 爆炸与冲击, 1999, 19(3): 229-234.
LIU J F, HU S S. Application of PVDF gauges to determine dynamic mechnical behaviour of low wave impedance material [J]. Explosion and Shock Waves, 1999, 19(3): 229-234.
[4]巫绪涛, 胡时胜, 田杰. PVDF应力测量技术及在混凝土冲击实验中的应用[J]. 爆炸与冲击, 2007, 27(5): 411-415.
WU X T, HU S S, TIAN J. Stressmeasurement method by PVDF gauge and its application to impact test for concrete [J]. Explosion and Shock Waves, 2007, 27(5): 411-415.
[5]孙权, 于洋, 陈宝成. 基于PVDF的压电传感器动态压力标定[J]. 黑龙江科学, 2021, 12(14):24-28.
SUN Q, YU Y, CHEN B C. Dynamic pressure calibration of pyrectric sensors based on PVDF [J]. Heilongjiang Science, 2021, 12(14): 24-28.
[6]黄家蓉, 刘光昆, 吴飚, 等. 爆炸冲击作用下混凝土中动态应力波测试与仿真[J]. 防护工程, 2020, 42(4): 23-28.
HUANG J R, LIU G K, WU B, et al. Testing and simulation of dynamic stress wave in concrete under explosion and impact [J].Protective Engineering, 2020, 42(4): 23-28.
[7]黄家蓉, 王幸, 吴飚, 等. 混凝土靶内爆炸应力波测量方法研究[J]. 中国测试, 2016, 42(10): 25-28.
HUANG J R, WANG X, WU B, et al. Research on stress wave measurement method in concrete target in explosion [J]. China Measurement & Test, 2016, 42(10): 25-28.
[8]UDDIN M, ALFORD S, AZIZ S M. Evaluating energy generation capacity of PVDF sensors: effects of sensor geometry and loading [J]. Materials, 2021, 14(8): 1895.
[9]KIM S, SHIN J Y, YUN Y, et al. Characteristics of piezoelectric polymeric PVDF sensor by impact testing [J]. Polymer (Korea), 2019, 43(5): 764-770.
[10]张旭, 覃双, 杨舒棋, 等. PVDF压电传感器及敏感单元设计关键技术[J]. 高压物理学报, 2020, 34(2): 023401.
ZHANG X, QIN S, YANG S Q, et al. Key design techniques for PVDF sensitive element used in dynamic compression experiments [J]. Chinese Journal of High Pressure Physics, 2020, 34(2): 023401.
[11]赵红平, 叶琳, 陆中琪. PVDF压电薄膜在应力波测量中的应用[J]. 力学与实践, 2004, 26(1): 37-41.
ZHAO H P, YE L, LU Z Q. Application of PVDF gauge to stress wave measurement [J]. Mechanics in Engineering, 2004, 26(1): 37-41.
[12]余尚江, 李科杰. 混凝土结构内冲击波应力传感器设计及其行为[J]. 爆炸与冲击, 2005, 25(4): 350-354.
YU S J, LI K J. Design and performance of PVDF pressure sensor for shock wave measurement in concrete structures [J]. Explosion and Shock Waves, 2005, 25(4): 350-354.
[13]张进秋, 高永强, 贾进锋, 等. PVDF压电加速度传感器电荷灵敏度影响因素分析[J]. 传感器世界, 2008(10): 21-25.
ZHANG J Q, GAO Y Q, JIA J F, et al. Impact factor analyses on charge sensitivity of PVDF piezoelectric accelerometer [J]. Sensor World, 2008(10): 21-25.
[14]朱金海. PVDF压电薄膜及其传感器的制备与性能研究[D]. 哈尔滨: 哈尔滨工业大学, 2011.
ZHU J H. Preparation and performance study of PVDF piezoelectric film and sensor [D]. Harbin: Harbin Institute of Technology, 2011.
[15]盛振新, 刘建湖, 张显丕, 等. 水下爆炸气泡射流载荷阵列测量技术探索[J]. 爆炸与冲击, 2021, 41(3): 031405.
SHENG Z X, LIU J H, ZHANG X P, et al. On an arraysensor technology for measuring bubble jet load generated by underwater explosion [J].Explosion and Shock Waves, 2021, 41(3): 031405.

相似文献/References:

[1]安二峰,杨军,陈鹏万.高锰钢整铸辙叉爆炸硬化实践与研究[J].爆破器材,2009,38(02):25.
 AN Erfeng,YANG Jun,CHEN Pengwan.Study on Explosive Hardening of Hadfield Steel Rail Frogs[J].EXPLOSIVE MATERIALS,2009,38(03):25.
[2]徐森①,张兴明①,潘峰①,等.工业炸药能量测试方法的分析[J].爆破器材,2013,42(01):18.[doi:10.3969/j.issn.1001-8352.2013.01.005]
 XU Sen,ZHANG Xingming,PAN Feng,et al.Analysis on the Energy Testing Methods of Industrial Explosives[J].EXPLOSIVE MATERIALS,2013,42(03):18.[doi:10.3969/j.issn.1001-8352.2013.01.005]
[3]臧立伟,尹建平,王志军.轴向预制破片战斗部的设计研究[J].爆破器材,2013,42(02):5.[doi:10.3969/j.issn.1001-8352.2013.02.002]
 ZANG liwei,YIN Jianping,WANG Zhijun.Optimizing Design of Axial Prefabricated Fragments[J].EXPLOSIVE MATERIALS,2013,42(03):5.[doi:10.3969/j.issn.1001-8352.2013.02.002]
[4]姚志华,李德战,付庆海,等.偏心亚半球成型装药结构的数值模拟[J].爆破器材,2013,42(02):17.[doi:10.3969/j.issn.1001-8352.2013.02.005]
 YAO Zhihua,LI Dezhan,FU Qinghai,et al.Numerical Simulation of Shape Charge with an Eccentric Subhemisphere Liner[J].EXPLOSIVE MATERIALS,2013,42(03):17.[doi:10.3969/j.issn.1001-8352.2013.02.005]
[5]杨亚东,李向东,王晓鸣.爆炸冲击波空中传播特征参量的优化拟合[J].爆破器材,2014,43(01):13.[doi:10.3969/j.issn.1001-8352.2014.01.003]
 YANG Yadong,LI Xiangdong,WANG Xiaoming.Optimum Fitting for Characteristic Parameters of Blast Shockwaves Traveling in Air[J].EXPLOSIVE MATERIALS,2014,43(03):13.[doi:10.3969/j.issn.1001-8352.2014.01.003]
[6]金朋刚,郭炜,任松涛,等.TNT密闭环境中能量释放特性研究[J].爆破器材,2014,43(02):10.[doi:10.3969/j.issn.1001-8352.2014.02.003]
 JIN Penggang,GUO Wei,REN Songtao,et al.Research on TNT Energy Release Characteristics in Enclosed Condition[J].EXPLOSIVE MATERIALS,2014,43(03):10.[doi:10.3969/j.issn.1001-8352.2014.02.003]
[7]冯海云,胡宏伟,赵向军,等.一种评估炸药作功能力的新测试方法[J].爆破器材,2014,43(02):33.[doi:10.3969/j.issn.1001-8352.2014.02.008]
 FENG Haiyun,HU Hongwei,ZHAO Xiangjun,et al.A New Test Method to Assess the Acting Ability of Explosive[J].EXPLOSIVE MATERIALS,2014,43(03):33.[doi:10.3969/j.issn.1001-8352.2014.02.008]
[8]郑思友,翟廷海,夏斌.工业雷管抗弯性能试验装置与方法设计[J].爆破器材,2014,43(03):33.[doi:10.3969/j.issn.1001-8352.2014.03.008]
 ZHENG Siyou,ZHAI Tinghai,XIA Bin.Testing System and Method Design of the Bending Resistance of Industrial Detonator[J].EXPLOSIVE MATERIALS,2014,43(03):33.[doi:10.3969/j.issn.1001-8352.2014.03.008]
[9]杨斐,王建灵,罗一鸣,等.DNTF/AP/Al体系炸药的能量特性分析[J].爆破器材,2014,43(05):11.[doi:10.3969/j.issn.1001-8352.2014.05.003]
 YANG Fei,WANG Jianling,LUO Yiming,et al.Explosion Energy Characteristics of DNTF/AP/Al Explosive[J].EXPLOSIVE MATERIALS,2014,43(03):11.[doi:10.3969/j.issn.1001-8352.2014.05.003]
[10]沈飞,王辉,余然,等.两种含铝炸药水中近场冲击波传播规律研究[J].爆破器材,2014,43(05):26.[doi:10.3969/j.issn.1001-8352.2014.05.006]
 SHEN Fei,WANG Hui,YU Ran,et al.Propagation Characteristics of Close-field Shock Wave for Two Aluminized Explosives by Underwater Explosion[J].EXPLOSIVE MATERIALS,2014,43(03):26.[doi:10.3969/j.issn.1001-8352.2014.05.006]

备注/Memo

备注/Memo:
收稿日期:2022-04-07
第一作者:孙飞(1989-),男,硕士,工程师,主要从事爆炸与毁伤作用机理方面的研究。E-mail:1326662880@qq.com
通信作者:陈友文(1984-),男,硕士,高工,主要从事铁路及轨道交通项目的建设管理。E-mail:42211271@qq.com
更新日期/Last Update: 2023-06-06