[1]张子龙,宋先钊,杨子凡,等.激波驱动下硝酸异丙酯的分散变化规律研究[J].爆破器材,2022,51(02):11-16.[doi:10.3969/j.issn.1001-8352.2022.02.002]
 ZHANG Zilong,SONG Xianzhao,YANG Zifan,et al.Study on Dispersion and Variation of Isopropyl Nitrate Driven by Shock Wave[J].EXPLOSIVE MATERIALS,2022,51(02):11-16.[doi:10.3969/j.issn.1001-8352.2022.02.002]
点击复制

激波驱动下硝酸异丙酯的分散变化规律研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
51
期数:
2022年02
页码:
11-16
栏目:
基础理论
出版日期:
2022-04-06

文章信息/Info

Title:
Study on Dispersion and Variation of Isopropyl Nitrate Driven by Shock Wave
文章编号:
5630
作者:
张子龙宋先钊杨子凡刘其闽李斌
南京理工大学化学与化工学院(江苏南京,210094)
Author(s):
ZHANG Zilong SONG Xianzhao YANG Zifan LIU Qimin LI Bin
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
液态燃料硝酸异丙酯液膜激波抛洒分散云雾
Keywords:
liquid fuel isopropyl nitrate liquid film shock wave throwing dispersion clouds
分类号:
TQ560
DOI:
10.3969/j.issn.1001-8352.2022.02.002
文献标志码:
A
摘要:
研究液滴的分散过程对于阻止火灾蔓延、提高内燃机效率、改进云雾爆轰武器和提高云雾爆轰控制技术有着重要的作用。通过高速摄影技术以及压力测量系统,着重研究液态燃料硝酸异丙酯(IPN)的分散过程,分析液膜厚度和激波强度对IPN液膜分散的影响。IPN液膜初始阶段以水平方向的分散为主;随后,以竖直方向的分散为主。水平方向,液膜抛洒先进入减速阶段,随着液膜厚度H的增加,液膜分散效果变差,分散需要的时间更长,其分散表征与石油醚相似。IPN液膜分散所需能量要高于石油醚。激波强度超过某个值之后,超压比ε随液膜厚度H呈线性变化,可以为液膜分散提供足够的能量。当H<12 mm时,IPN液膜的分散变化过程主要受激波强度影响;当H>12 mm时,IPN液膜的分散变化过程主要受液膜厚度影响。
Abstract:
The study of droplet dispersion process plays an important role in preventing fire spread, improving the efficiency of internal combustion engine and improving cloud detonation weapon and cloud detonation control technology. Through high-speed photography and pressure measurement system, the dispersion process of liquid fuel isopropyl nitrate (IPN) was emphatically studied, and the influence of liquid film thickness and shock wave intensity on the dispersion of IPN was analyzed. The initial stage of IPN liquid film is dominated by horizontal dispersion, followed by vertical dispersion. In horizontal direction, liquid film sprinkling first enters the deceleration stage. With the increase of thickness of -liquid film H, the dispersion effect of liquid film becomes worse, and the dispersion takes longer time. Its dispersion characterization is similar to that of petroleum ether. The energy required for IPN liquid film dispersion is higher than that of petroleum ether. When the shock wave intensity exceeds a certain value, the overpressure ratio ε??changes linearly with the thickness of liquid film H, which can provide sufficient energy for liquid film dispersion. When H<12mm, the dispersion change process of IPN liquid film is mainly affected by shock wave intensity. While when H>12mm, the dispersion change process of IPN liquid film is mainly affected by thickness of liquid film.

参考文献/References:

[1]THEOFANOUS T G. Aerobreakup of newtonian and viscoelastic liquids [J]. Annual Review of Fluid Mechanics, 2011, 43: 661-690. ? ??
[2]LOWE A, KOURMATZIS A, MASRI A R. Turbulent spray flames of intermediate density: stability and near-field structure [J]. Combustion and Flame, 2017, 176: 511-520.
[3]GOUNDER J D, KOURMATZIS A, MASRI A R. Turbulent piloted dilute spray flames: flow fields and droplet dynamics [J]. Combustion and Flame, 2012, 159(11): 3372-3397.
[4]XIAO F, WANG Z G, SUN M B, et al. Simulation of drop deformation and breakup in supersonic flow [J]. Proceedings of the Combustion Institute, 2017, 36(2): 2417-2424.
[5]LIANG C, FEIGL K A, TANNER F X. Axisymmetric simulations of drop deformation and breakup for validation of a modified Taylor analogy breakup model [J]. Atomization and Sprays, 2017, 27(5): 439-455.
[6]宋述忠, 彭金华, 陈网桦, 等. 硝酸异丙酯与空气混合物的爆轰性能研究[J]. 爆破器材, 2002, 31(1):4-6.
SONG S Z, PENG J H, CHEN W H, et al. Study on ignition and detonation propeties of nitric ether-air mixture [J]. Explosive Materials, 2002, 31(1): 4-6.
[7]李易昭. 云爆弹云雾生长规律及浓度测试方法研究[D]. 南京: 南京理工大学, 2016: 1-3.
[8]徐启明. 激波与燃料相互作用实验研究[D]. 南京: 南京理工大学, 2021: 31-39.
XU Q M. Experimental study on the interaction between shock wave and fuel [D]. Nanjing: Nanjing University of Science and Technology, 2021: 31-39.
[9]丁珏. 液体的爆炸抛撒理论模型及全过程数值模拟[D]. 大连: 大连理工大学, 2001: 134.
[10]彭旭, 李斌, 王顺尧, 等. 激波冲击作用下液膜破碎的气液两相流[J]. 物理学报, 2020, 69(24): 244702.
PENG X, LI B, WANG S Y, et al. Gasliquid twophase flow of liquid film breaking process under shock wave [J]. Acta Physica Sinica, 2020, 69(24): 244702.
[11]唐维军,沈隆钧,张景琳. 流体力学界面不稳定性研究[G]//《中国工程物理研究院科技年报》编辑部.中国工程物理研究院科技年报(2000). 绵阳:《中国工程物理研究院科技年报》编辑部,2000: 380.
[12]石艺娜, 秦承森. 液体“尖钉”拉伸破碎的射流不稳定性分析[C]//中国力学学会.中国力学学会学术大会2007论文摘要集(下). 北京: 中国力学学会, 2007.
[13]CHEN C J, MA X, MA J Q. Study on concentration and turbulence of solidliquid FAE in dispersal process [J]. Defence Technology, 2018, 14(6): 657-660.
[14]吴德义. 爆炸冲击波作用下液体抛撒不同阶段运动规律分析[J]. 爆破器材, 2005, 34(2): 4-7.
WU D Y. Study on specialty of liquid dispersal with blast [J]. Explosive Materials, 2005, 34(2): 4-7.
[15]张晓娜, 岳树元, 章利特, 等. 激波驱动的气固两相流力学特性研究[J]. 水动力学研究与进展A辑,2008, 23(5): 538-545.
ZHANG X N, YUE S Y, ZHANG L T, et al. Study of the mechanics of gas-solid two-phase flow driven by shock waves [J]. Chinese Journal of Hydrodynamics A, 2008, 23(5): 538-545.
[16]李斌. 激波驱动下液体与固体颗粒的抛撒研究 [D]. 南京: 南京理工大学, 2012: 14-18.
LI B. Experimental study on the dispersion of liquid and solid particles induced by shock wave [D]. Nanjing: Nanjing University of Science and Technology, 2012: 14-18.
[17]王海洋, 解立峰, 李斌, 等. 激波抛撒水膜成雾参数实验研究[J].实验流体力学, 2013, 27(2): 50-55.
WANG H Y, XIE L F, LI B, et al. Experimental study on parameters of water particles in the cloud from liquid film induced by shock wave [J]. Journal of Experiments in Fluid Mechanics, 2013, 27(2): 50-55.

备注/Memo

备注/Memo:
收稿日期:2021-07-14
基金项目:国家自然科学基金青年科学基金(11802136);江苏省大学生创新创业训练计划(202010288041Y)
第一作者:张子龙(2000-),男,本科生,主要从事二相流、云雾爆轰研究。E-mail:zhangzilong0815@163.com?
通信作者:李斌(1984-),男,博士,副研究员,主要从事多相流、云雾爆轰研究。E-mail:libin@njust.edu.cn
更新日期/Last Update: 2022-04-06