[1]张佳①,赵岩②.基于CEEMDAN法的隧道爆破信号趋势项去除[J].爆破器材,2021,50(06):58-64.[doi:10.3969/j.issn.1001-8352.2021.06.010]
 ZHANG Jia,ZHAO Yan.Removal of Trend Items of Tunnel Blasting Signals Based on CEEMDAN[J].EXPLOSIVE MATERIALS,2021,50(06):58-64.[doi:10.3969/j.issn.1001-8352.2021.06.010]
点击复制

基于CEEMDAN法的隧道爆破信号趋势项去除()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
50
期数:
2021年06
页码:
58-64
栏目:
爆破技术
出版日期:
2021-11-26

文章信息/Info

Title:
Removal of Trend Items of Tunnel Blasting Signals Based on CEEMDAN
文章编号:
5598
作者:
张佳赵岩
①山西工程科技职业大学(山西太原,030031)
②中国矿业大学(北京)力学与建筑工程学院(北京,100083)
Author(s):
ZHANG Jia ZHAO Yan
① Shanxi Vocational University of Engineering Science (Shanxi Taiyuan, 030031)
② School of Mechanics and Civil Engineering, China University of Mining and Technology (Beijing) (Beijing, 100083)
关键词:
隧道爆破振动信号数值仿真 CEEMDAN去趋势项
Keywords:
tunnel blasting vibration signal numerical simulation CEEMDAN removal of trend item
分类号:
O382
DOI:
10.3969/j.issn.1001-8352.2021.06.010
文献标志码:
A
摘要:
以京张高铁某隧道工程为背景,引入一种通过CEEMDAN(complete ensemble empirical mode decomposition with adaptive noise)法消除隧道爆破信号趋势项的方法。首先,利用CEEMDAN法分解实测爆破信号,得到一系列本征模态分量及余项。然后,通过均值比法识别筛选信号趋势项的有效组成部分,并去除含有趋势项的分量。为验证CEEMDAN法去趋势项的可行性,通过数值仿真信号进行校核。结果表明,与现有EMD(empirical mode decomposition)法、EEMD(ensemble empirical mode decomposition)法比较,基于CEEMDAN法筛选得到的趋势项与人为添加的趋势项最为接近。同时,利用此方法处理实测爆破信号,解决了原始信号中存在的基线偏移及低频超高异常等问题。
Abstract:
Based on a tunnel project of the Beijing-Zhangjiakou high-speed railway, a method of eliminating trend items of tunnel blasting signal through CEEMDAN (complete ensemble empirical mode decomposition with adaptive noise) was introduced. Firstly, CEEMDAN was used to decompose the measured blasting signal to obtain a series of eigenmode components and residual terms. Then, effective component of trend item of the initial signal was identified by the mean ratio method, and the component containing the trend item was removed. In order to verify the feasibility of removing trend item by CEEMDAN method, it was checked by numerical simulation signal. Results show that, compared with EMD (empirical mode decomposition) method and EEMD (ensemble empirical mode decomposition) method, the trend item obtained by CEEMDAN is closest to the artificially added trend item. At the same time, this method is used to process the measured blasting signals, which solves the problems of baseline offset and lowfrequency superhigh abnormality in original signals.

参考文献/References:

[1]单仁亮, 白瑶, 宋永威, 等. 冻结立井模型爆破振动信号的小波包分析[J]. 煤炭学报, 2016, 41(8): 1923-1932.
SHAN R L, BAI Y, SONG Y W, et al. Wavelet packet analysis of blast vibration signals of freezing shaft model [J]. Journal of China Coal Society, 2016, 41(8): 1923-1932.
[2]朱正国,杨利海,王道远,等.立体交叉隧道爆破动力响应和安全范围研究[J].铁道工程学报, 2019, 36(1): 59-64.
ZHU Z G, YANG L H, WANG D Y, et al. Analysis of dynamic response and safety range of crossing tunnel based on blasting vibration [J]. Journal of Railway Engineering Society, 2019, 36(1): 59-64.
[3]何理, 钟冬望, 陈晨, 等. 岩质高边坡开挖施工的爆破振动监测与分析[J]. 金属矿山, 2017(1): 6-10.
HE L, ZHONG D W, CHEN C, et al. Monitoring and analysis of blasting vibration in high rocky slope excavation [J]. Metal Mine, 2017(1): 6-10.
[4]张乐文, 王洪波, 邱道宏, 等. 小波降噪与粒子群优化综合回归爆破震动参数[J]. 岩土力学, 2014, 35(增刊2): 338-342.
ZHANG L W, WANG H B, QIU D H, et al. Blasting vibration parameters using comprehensive regression of wavelet denoising and particle swarm optimization algorithm [J]. Rock and Soil Mechanics, 2014, 35(Suppl. 2): 338-342.
[5]单仁亮, 宋永威, 白瑶, 等. 基于小波包变换的爆破信号能量衰减特征研究[J]. 矿业科学学报, 2018, 3(2): 119-128.
SHAN R L, SONG Y W, BAI Y, et al. Research on the energy attenuation characteristics of blasting vibration signals based on wavelet packet transformation [J]. Journal of Mining Science and Technology, 2018, 3(2): 119-128.
[6]CHEN G, LI Q Y, LI D Q, et al. Main frequency band of blast vibration signal based on wavelet packet transform [J]. Applied Mathematical Modelling, 2019, 74: 569-585.
[7]王燕, 薛云朝, 马铁华. 基于EMD和最小二乘法的零漂处理方法研究[J].北京理工大学学报, 2015, 35(2): 118-122.
WANG Y, XUE Y C, MA T H. Research on zero drift processing method using EMD and least-square [J]. Transactions of Beijing Institute of Technology, 2015, 35(2): 118-122.
[8]吴志成, 王重阳, 任爱君. 消除信号趋势项时小波基优选方法研究[J]. 北京理工大学学报, 2013, 33(8): 811-814.
WU Z C, WANG C Y, REN A J. Optimal selection of wavelet base functions for eliminating signal trend based on wavelet analysis [J]. Transactions of Beijing Institute of Technology, 2013, 33(8):811-814.
[9]龙源, 谢全民, 钟明寿, 等. 爆破震动测试信号预处理分析中趋势项去除方法研究 [J]. 工程力学, 2012, 29(10): 63-68.
LONG Y, XIE Q M, ZHONG M S, et al. Research on the trend removing method in preprocessing analysis of blasting vibration monitoring signals [J]. Engineering Mechanics, 2012, 29(10): 63-68.
[10]韩亮, 刘殿书, 辛崇伟, 等. 深孔台阶爆破近区振动信号趋势项去除方法[J]. 爆炸与冲击, 2018, 38(5): 1006-1012.
HAN L, LIU D S, XIN C W, et al. Trend removing methods of vibration signals of deep hole bench blasting in near field [J]. Explosion and Shock Waves, 2018, 38(5): 1006-1012.[11]贾贝, 凌天龙, 侯仕军, 等. 变分模态分解在爆破信号趋势项去除中的应用[J]. 爆炸与冲击, 2020, 40(4): 045201.
JIA B, LING T L, HOU S J, et al. Application of variable mode decomposition in the removal of blasting signal trend item [J]. Explosion and Shock Waves, 2020, 40(4): 045201.?
[12]杨孟, 王瑾, 周西峰, 等. 基于CEEMD和小波包的降噪方法研究[J]. 南京邮电大学学报(自然科学版), 2018, 38(2): 41-47.
YANG M, WANG J, ZHOU X F, et al. De-noising method based on CEEMD and wavelet packet [J]. Journal of Nanjing University of Posts and Telecommunications (Natural Science Edition), 2018, 38(2): 41-47.
[13]易文华, 刘连生, 闫雷, 等. 基于EMD改进算法的爆破振动信号去噪[J]. 爆炸与冲击, 2020, 40(9):095201.
YI W H, LIU L S, YAN L, et al. Vibration signal de-noising based on improved EMD algorithm [J]. Explosion and Shock Waves, 2020, 40(9): 095201.
[14]YU C, YUE H Z, LI H B, et al. Scale model test study of influence of joints on blasting vibration attenuation [J]. Bulletin of Engineering Geology and the Environment, 2021, 80: 533-550.
[15]王海龙, 赵岩, 王海军, 等. 基于CEEMDAN-小波包分析的隧道爆破信号去噪方法[J]. 爆炸与冲击, 2021, 41(5): 055202.
WANG H L, ZHAO Y, WANG H J, et al. De-noising method of tunnel blasting signal based on CEEMDAN decomposition-wavelet packet analysis [J]. Explosion and Shock Waves, 2021, 41(5): 055202.
[16]黄金, 吴庆良, 陈钒. 基于CEEMDAN-WPT联合去噪的灾后求救信号能量分布特征研究[J]. 南京理工大学学报, 2020, 44(2): 194-201.
HUANG J, WU Q L, CHEN F. Study on energy distribution character about postdisaster rescue signal based on CEEMDAN-WPT denoising [J]. Journal of Nanjing University of Science and Technology, 2020, 44(2): 194-201.
[17]HASSAN A R, SUBASI A, ZHANG Y C. Epilepsy seizure detection using complete ensemble empirical mode decomposition with adaptive noise [J]. KnowledgeBased Systems, 2020, 191: 105333.
[18]HE C B , NIU P, YANG R, et al. Incipient rolling element bearing weak fault feature extraction based on adaptive second-order stochastic resonance incorporated by mode decomposition[J]. Measurement, 2019, 145: 687-701.
[19]刘霞, 宋启航. CEEMDAN自适应阈值去噪算法在地震方向的应用[J].重庆大学学报, 2019, 42(7): 95-104.?
LIU X, SONG Q H. CEEMDAN adaptive threshold denoising algorithm in application to seismic direction [J]. Journal of Chongqing University, 2019, 42(7): 95-104.?
[20]张军, 潘泽鑫, 郑玉新, 等.振动信号趋势项提取方法研究[J]. 电子学报, 2017, 45(1): 22-28.
ZHANG J, PAN Z X, ZHENG Y X, et al. Research on vibration signal trend extraction [J]. ACTA Electronic Journal, 2017, 45(1): 22-28.
[21]李宗春, 邓勇, 张冠宇, 等. 变形测量异常数据处理中小波变换最佳级数的确定 [J]. 武汉大学学报(信息科学版), 2011, 36(3): 285-288.
LI Z C, DENG Y, ZHANG G Y, et al. Determination of best grading of wavelet transform in deformation measurement data filtering [J]. Geomatics and Information Science of Wuhan University, 2011, 36(3): 285-288.
[22]王海龙, 赵岩, 王永佳, 等.草帽山隧道爆破振动监测与分析[J]. 铁道建筑, 2017, 57(12): 67-70.??
WANG H L, ZHAO Y, WANG Y J, et al. Blasting vibration monitoring and analysis of Caomaoshan Tunnel [J]. Railway Engineering, 2017, 57(12): 67-70.
[23]王海龙, 赵岩, 王永佳, 等. 新建京张高铁立体交叉隧道爆破振动控制研究[J]. 铁道标准设计, 2018, 62(7): 130-134.
WANG H L, ZHAO Y, WANG Y J, et al. Study on blasting vibration control of three-dimensional cross tunnel on Beijing to Zhangjiakou high-speed railway [J]. Railway Standard Design, 2018, 62(7): 130-134.
[24]HUANG D, CUI S, LI X Q. Wavelet packet analysis of blasting vibration signal of mountain tunnel [J]. Soil Dynamics and Earthquake Engineering, 2019, 117: 72-80.
[25]LI L, WANG F, SHANG F, et al. Energy spectrum analysis of blast waves based on an improved Hilbert-Huang transform [J]. Shock Waves, 2017, 27: 487-494.

相似文献/References:

[1]杨砚世①,肖志华②,李向东①.破片撞击燃料箱时水锤效应的数值仿真研究[J].爆破器材,2014,43(04):26.[doi:10.3969/j.issn.1001-8352.2014.04.006]
 YANG Yanshi,XIAO Zhihua,LI Xiangdong.Numerical Simulation Study on Hydrodynamic Ram Due to the Penetration of Fuel Tank by High Energy Fragments[J].EXPLOSIVE MATERIALS,2014,43(06):26.[doi:10.3969/j.issn.1001-8352.2014.04.006]
[2]刘鹏①,王雨时①,闻泉①,等.基于输出特性仿真的引信传爆管结构优化[J].爆破器材,2016,45(05):23.[doi:10.3969/j.issn.1001-8352.2016.05.005]
 LIU Peng,WANG Yushi,WEN Quan,et al.Structural Optimization of Fuze Booster Based on Simulation of Its Output Characteristics[J].EXPLOSIVE MATERIALS,2016,45(06):23.[doi:10.3969/j.issn.1001-8352.2016.05.005]
[3]何晓晖①,李峰②,沙毅刚①,等.链枷式排爆装置抗爆性能的仿真与试验研究[J].爆破器材,2021,50(02):34.[doi:10.3969/j.issn.1001-8352.2021.02.007]
 HE Xiaohui,LI Feng,SHA Yigang,et al.Simulation and Experimental Research on Anti-Explosion Performance of a Chain Flail Explosive Disposal Device[J].EXPLOSIVE MATERIALS,2021,50(06):34.[doi:10.3969/j.issn.1001-8352.2021.02.007]
[4]王海龙①,李帅①,赵岩②,等.CEEMDAN小波包联合降噪的优化方法[J].爆破器材,2021,50(04):48.[doi:10.3969/j.issn.1001-8352.2021.04.009]
 WANG Hailong,LI Shuai,ZHAO Yan,et al.Optimization Method of CEEMDAN-Wavelet Packet Joint Noise Reduction[J].EXPLOSIVE MATERIALS,2021,50(06):48.[doi:10.3969/j.issn.1001-8352.2021.04.009]
[5]沙洪博①,袁俊明①,黄求安②,等.DNAN基熔铸装药榴弹跌落冲击特性与安全性分析[J].爆破器材,2021,50(05):28.[doi:10.3969/j.issn.1001-8352.2021.05.005]
 SHA Hongbo,YUAN Junming,HUANG Qiuan,et al.Drop Impact Characteristics and Safety Analysis of DNAN-Based Melt-Cast Charge Grenade[J].EXPLOSIVE MATERIALS,2021,50(06):28.[doi:10.3969/j.issn.1001-8352.2021.05.005]
[6]王海龙①②,李云赫①②,赵岩③.k值优化VMD-小波包分析联合降噪方法在隧道爆破信号中的应用[J].爆破器材,2021,50(05):50.[doi:10.3969/j.issn.1001-8352.2021.05.009]
 WANG Hailong,LI Yunhe,ZHAO Yan.Application of Denoising Method of k?Value Optimized VMD Combined with Wavelet Packet Analysis in Tunnel Blasting Signal[J].EXPLOSIVE MATERIALS,2021,50(06):50.[doi:10.3969/j.issn.1001-8352.2021.05.009]

备注/Memo

备注/Memo:
收稿日期:2021-04-08
基金项目:山西交通控股集团有限公司科技项目(19-JKKJ-46);国家自然科学基金(51878242)
第一作者:张佳(1984-),男,硕士,讲师,主要研究方向为隧道与地下工程的施工技术、质量检测以及变形监测等。E-mail:24175702@qq.com
通信作者:赵岩(1991-),男,博士研究生,主要研究方向为爆破振动及损伤。E-mail:304965624@qq.com
更新日期/Last Update: 2021-11-22