[1]董军①②,杜茂华①,王晓峰②,等.3D打印技术在火工品和炸药中的应用研究[J].爆破器材,2021,50(04):1-7.[doi:10.3969/j.issn.1001-8352.2021.04.001]
 DONG Jun,DU Maohua,WANG Xiaofeng,et al.Application of 3D Printing Technology in Pyrotechnics and Explosives[J].EXPLOSIVE MATERIALS,2021,50(04):1-7.[doi:10.3969/j.issn.1001-8352.2021.04.001]
点击复制

3D打印技术在火工品和炸药中的应用研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
50
期数:
2021年04
页码:
1-7
栏目:
基础理论
出版日期:
2021-07-07

文章信息/Info

Title:
Application of 3D Printing Technology in Pyrotechnics and Explosives
文章编号:
5528
作者:
董军①②杜茂华王晓峰王伟力谭波邢江涛姚天乐黄亚峰杨雄
①海军工程大学(湖北武汉,430033)
②西安近代化学研究所(陕西西安,710065)
Author(s):
DONG Jun①② DU Maohua WANG Xiaofeng WANG Weili TAN Bo XING JiangtaoYAO Tianle HUANG Yafeng YANG Xiong
① Naval University of Engineering (Hubei Wuhan, 430033)
② Xi’an Modern Chemistry Research Institute (Shaanxi Xi’an, 710065)
关键词:
兵器科学与技术3D打印增材制造炸药火工品
Keywords:
ordnance science and technology 3D printing additive manufacture explosive pyrotechnics
分类号:
TJ55
DOI:
10.3969/j.issn.1001-8352.2021.04.001
文献标志码:
A
摘要:
围绕3D打印技术在火工品装药和炸药装药两个领域的国内外研究情况进行述评,内容涉及3D打印技术在火工品和炸药中的研究进展、3D打印技术在炸药装药领域中的应用分析等方面。结果表明,3D打印技术具有便于实现复杂结构装药、无需传统模具、小批量试制成本低、载质量小、本质安全性高等特点。所以,3D打印技术在火工品装药和炸药装药领域具有一定的应用价值,也是这两个领域今后重点发展的方向之一。
Abstract:
Research situation of 3D printing technology in pyrotechnics charge and explosive charge at home and abroad, including research progress of 3D printing technology in pyrotechnics and explosive ink, and the application analysis of 3D printing technology in explosive charge field, was reviewed. Results show that 3D printing technology has the characteristics of easy to realize complex structure charge, no need of traditional mold, low cost of small batch trial production, small load mass and high intrinsic safety. As a result, 3D printing technology has a certain application value in the field of pyrotechnics charge and explosive charge, which is also one of the key development directions of these two fields in the future.

参考文献/References:

[1]李权,王福德,王国庆,等. 航空航天轻质金属材料电弧熔丝增材制造技术[J].航空制造技术, 2018,61(3): 74-82,89.
LI Q, WANG F D, WANG G Q, et al.Wire and arc additive manufacturing of lightweight metal components in aeronautics and astronautics[J]. Aeronautical Manufacturing Technology, 2018, 61(3): 74-82,89.
[2]张小伟. 金属增材制造技术在航空发动机领域的应用[J]. 航空动力学报, 2016, 31(1): 10-16.
ZHANG X W. Application of metal additive manufacturing in aero-engine[J]. Journal of Aerospace Power,2016, 31(1): 10-16.
[3]周长平,林枫,杨浩,等. 增材制造技术在船舶制造领域的应用进展[J]. 船舶工程, 2017,39(2):80-87.
ZHOU C P, LIN F, YANG H, et al. Application Progress of additive manufacturing technology in shipbuilding field[J]. Ship Engineering, 2017,39(2):80-87.
[4]张洪宝,胡大超. 增材制造技术的应用及发展[J]. 上海应用技术学院学报(自然科学版), 2016, 16(1):93-98.
ZHANG H B, HU D C. Application and development of additional material manufacturing technology[J]. Journal of Shanghai Institute of Technology(Natural Science), 2016, 16(1):93-98.
[5]ZUNINO III J L, SCHMIDT D P, PETROCK A M, et al. Inkjet printed devices for armament applications[J].Tech Connect Briefs,2010,2:542-545.
[6]IHNEN A C, LEE W, FUCHS B, et al. Inkjet printing ofnanocomposite high-explosive materials for direct writefuzing[C]//54th Fuze Conference. Kansas City, MO,US, 2010.
[7]SURAPANENI R, DAMAVARAPU R. Process improvements in CL-20 manufacture[C]// 31th International Annual Conference of ICT on Energetic Materials. Karlsruhe, Germany: Fraunhofer Institute for Chemical Technoloy, 2000:108.
[8]IHNEN A C, PETROCK A M, CHOU T, et al. Crystal morphology variation in inkjet-printed organic materials[J]. Applied Surface Science, 2011, 258(2): 827-833.
[9]IHNEN A C, PETROCK A M, CHOU T, et al. Organic nanocomposite structure tailored by controlling droplet coalescence during inkjet printing[J]. ACS Applied Materials & Interfaces, 2012, 4(9): 4691-4699.
[10]IHNEN A C, LEE W Y, FUCHS B, et al. Ink jet printing and patterning of explosive materials: US 9296241 B1[P]. 2016-03-29.
[11]WALTERS I T, GROVEN L J. Environmentally friendly boron-based pyrotechnic delays: an additive manufacturing approach[J]. ACS Sustainable Chemistry Engineering,2019,7(4):4360-4367.
[12]RUZ-NUGLO F D, GROVEN L J. 3-D printing and development of fluoropolymer based reactive inks[J]. Advanced- Engineering Materials, 2017,20(2):1700390.
[13]姚艺龙,吴立志,唐乐,等. 纳米CL-20炸药含能墨水的直写规律[J]. 火炸药学报, 2016, 39(1): 39-42.
YAO Y L, WU L Z, TANG Y, et al. Direct writing rule of nano CL-20 explosive ink[J]. Chinese Journal of Explosives & Propellants, 2016, 39(1): 39-42.
[14]宋长坤,安崇伟,叶宝云,等. 粒度对CL20基炸药油墨临界传爆特性的影响[J]. 含能材料,2018,26(12):1014-1018.
SONG C K, AN C W, YE B Y, et al. Influence of particle size on critical detonation performance of CL-20 explosives ink[J]. Chinese Journal of Energetic Materials, 2018,26(12):1014-1018.
[15]李千兵,安崇伟,徐传豪,等. Viton/PVA粘结剂乳液的设计及其在炸药油墨中的应用[J].含能材料, 2019,27(1):60-67.
LI Q B, AN C W, XU C H, et al. Design of viton/PVA binder emulsion and its application in explosives ink[J].Chinese Journal of Energetic Materials, 2019,27(1):60-67.
[16]朱自强,陈瑾,谯志强,等. CL-20基直写炸药油墨的制备与表征[J]. 含能材料, 2013,21(2): 235-238.
ZHU Z Q, CHEN J, QIAO Z Q, et al. Preparation and characterization of direct write explosive ink based on CL-20[J]. Chinese Journal of Energetic Materials, 2013,21(2): 235-238.
[17]于江,杨振英,安瑱. 油墨炸药的粒度对其传爆性能的影响[J]. 含能材料, 2005, 13(3):155-157.
YU J, YANG Z Y, AN T. Effects of the particle size of ink explosive on the explosion transfer performance[J]. Chinese Journal of Energetic Materials, 2005, 13(3):155-157.
[18]常红娟,于江,李蓉. 油墨炸药质量控制研究[J]. 火工品, 2009(2):20-23.CHANG H J, YU J, LI R. Research on controlling the quality of ink explosive[J].Initiators & Pyrotechnics, 2009(2):20-23.
[19]韩瑞山,张蕊,张方,等. 溶剂对微控直写含能油墨的性能影响[J]. 火工品, 2017 (1): 18-21.
HAN R S, ZHANG R, ZHANG F, et al. Influences of solvent on the properties of explosive inks for micro-controlled direct writing[J]. Initiators & Pyrotechnics, 2017 (1): 18-21.
[20]ZHANG L, ZHANG F, WANG Y L, et al. Preparation and characterization of direct write explosive ink based on CL-20[J].Journal of Physics Conference Series, 2019, 1209(2019):12-16.
[21]邢宗仁.含能材料三维打印快速成形技术研究[D]. 南京: 南京理工大学, 2012.
XING Z R. Research of three-dimensional printing for energetic materials[D]. Nanjing: Nanjing University of Science & Technology,2012.
[22]徐传豪,安崇伟,武碧栋,等.CL-20基炸药油墨的直写成型及性能研究[J].火工品, 2018(1):41-44.
XU C H, AN C W, WU B D, et al.Performances and direct writing of CL-20 based explosive ink[J].Initiators & Pyrotechnics, 2018(1):41-44.
[23]JOHNSTON H E, WARDLE R B. Process of crystallizing 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazatetracyclo [5.5.0.05, 903, 11] dodecane: US 5874574A[P]. 1999-02-23.
[24]宋长坤. CL-20基炸药油墨设计及微笔直写成型技术研究[D].太原:中北大学, 2018.
SONG C K. CL-20-based explosive ink: design and micropen direct ink writing[D]. Taiyuan: North University of China, 2018.
[25]李千兵. 乳液型粘结体系/CL20基炸药油墨的设计及应用基础研究[D]. 太原:中北大学, 2019.
LI Q B. Study on the design and basic application of emulsion binder system/CL20 based explosive ink[D].Taiyuan: North University of China, 2019.
[26]徐传豪,安崇伟,王晶禹,等. 表面活性剂的HLB值对HMX/聚氨酯基炸药油墨流变性能的影响[J]. 含能材料, 2017,25(9): 745-749.
XU C H, AN C W, WANG J Y, et al. Effect of HLB numbers of surfactants on the rheological property of HMX/polyurethane based explosive ink[J]. Chinese Journal of Energetic Materials, 2017,25(9): 745-749.
[27]王景龙. 3DP 炸药油墨配方设计及制备技术[D]. 太原:中北大学, 2015.
WANG J L. 3DP explosive ink formulation and preparation technology[D]. Taiyuan: North University of China, 2015.
[28]张晓婷. 用于喷墨打印快速成形技术的纳米铝热剂含能油墨研究[D]. 南京:南京理工大学, 2013.
ZHANG X T. Study on energetic ink of nanothermites for inkjet print rapid prototyping technology[D]. Nanjing: Nanjing University of Science & Technology,2013.
[29]PIQUE A,CHRISET D B.Direct-write technologies for rapid prototy-ping applications[M]. San Diego,CA,US: Academic Press, 2002.
[30]彭翠枝.含能材料增材制造技术:新兴的精密高效安全制备技术[J].含能材料,2019,27(6):445-447.
PENG C Z. Additive manufacturing for energetic materials: emerging precision loading & efficient and safe preparation technology[J]. Chinese Journal of Energetic Materials, 2019,27(6):445-447.
[31]CHIROLI M, CISZEK F, BASCHUNG B.Additive manufacturing of energetic material[C]//Proceedings of the 29th Annual International Solid Freedom Fabrication Symposium:An Additive Manufacturing Conference. Austin, TX, USA,2018.
[32]MURRAY A K,ISIK T,ORTALAN V,et al. Twocomponent additive manufacturing of nanothermite structures via reactive inkjet printing[J]. Journal of Applied Physics,2017,122:184901.
[33]转管炮. 炸药也能3D打印?英国人这回真牛了,个性化定制炸药,还特省钱![EB/OL].[2020-03-18]. http://xw.qq.com/cmsid/20200318A0GZM800.html.
[34]肖磊,王庆华,李万辉,等.基于三维打印技术的纳米奥克托今与梯恩梯熔铸炸药制备及性能研究[J]. 兵工学报, 2018, 39(7):1291-1298.
XIAO L, WANG Q H, LI W H, et al. Preparation and performances of nano-HMX and TNT melt-cast explosives based on 3D printing technology[J]. Acta Armamentarii, 2018, 39(7):1291-1298.
[35]方健,胡桥,刘玥,等. PBX型炸药3D打印喷射理论与仿真分析[J]. 水下无人系统学报, 2018, 26(2):140-145.
FANG J, HU Q, LIU Y, et al. 3D printing injection theory and simulation analysis of PBX explosive[J]. Journal of Unmanned Undersea Systems, 2018, 26(2):140-145.
[36]黄瑨,王军,毛耀峰,等. TATB/CL-20复合装药结构的 3D打印成型技术[J]. 含能材料, 2019, 27(11):931-935.
HUANG J, WANG J, MAO Y F,et al.Preparation of CL-20/TATB composite charge structure by 3D printing technology[J]. Chinese Journal of Energetic Materials, 2019,27(11):931-935.
[37]张亮,刘晶,张哲,等. 增材制造技术以及在火炸药研究中的现状与发展[J]. 爆破器材, 2016,45(4):1-8.
ZHANG L, LIU J, ZHANG Z, et al. Additive manufacture technology and its research status and development in propellant and explosive industry[J]. Explosive Materials, 2016,45(4):1-8.
[38]蔺向阳,屈明和,曹宇鹏,等. 一种基于紫外光固化的固体推进剂3D打印成型方法:CN 107283826A[P]. 2017-10-24.
[39]蔺向阳,曹宇鹏. 一种固体推进剂增材制造系统及外表面旋转成型方法:CN 106863801A[P]. 2017-06-20.
[40]BROUSSEEAU P, AMPLEMAN G, THIBOUTOT S, et al. High performance melt-cast plastic-bonded explosives[C]// 2006 Insensitive Munition & Energetic Materials Technology Symposium.Bristol,UK:Defence Research and Development Canada,2006:24-28.
[41]CUMMING A S. Collaboration on pressable explosives for shaped charges:a European success story[J]. Propellants, Explosives, Pyrotechnics,1999, 24(1):46-49.
[42]孙建. 等静压炸药装药技术发展与应用[J]. 含能材料,2012,20(5):638-642.
SUN J. Development of isostatic pressing technology of explosive charge[J]. Chinese Journal of Energetic Materials, 2012,20(5):638-642.
[43]黄亚峰,王晓峰,王红星,等. 火炸药双螺杆挤出工艺的研究现状与发展[J]. 爆破器材,2013,42(4):41-44.
HUANG Y F, WANG X F, WANG H X, et al. Research status and development of the twin screw extrusion technology on the propellants and explosives[J]. Explosive Materials, 2013,42(4):41-44.

相似文献/References:

[1]付恒,陈智刚.等壁厚球缺形装药结构优化设计[J].爆破器材,2016,45(05):17.[doi:10.3969/j.issn.1001-8352.2016.05.004]
 FU Heng,CHEN Zhigang.Optimization Design of Hemispherical Charge Structure with Equal Thickness[J].EXPLOSIVE MATERIALS,2016,45(04):17.[doi:10.3969/j.issn.1001-8352.2016.05.004]
[2]霸书红,沈红旗.高氯酸铵粒径对3D打印含能树脂药柱燃烧性能的影响[J].爆破器材,2021,50(04):18.[doi:10.3969/j.issn.1001-8352.2021.04.004]
 BA Shuhong,SHEN Hongqi.Effect of Particle Size of Ammonium Perchlorate on Combustion Performance of 3D Printed Energetic Resin Grain[J].EXPLOSIVE MATERIALS,2021,50(04):18.[doi:10.3969/j.issn.1001-8352.2021.04.004]

备注/Memo

备注/Memo:
收稿日期:2020-09-05
第一作者:董军(1982-),男,博士研究生,高级工程师,主要从事高能炸药及装药技术研究。E-mail:94180853@qq.com
通信作者:王晓峰(1967-),男,博士,研究员,主要从事混合炸药技术研究。E-mail:wangxf_204@163.com
更新日期/Last Update: 2021-07-07