[1]吴星亮①,王红松②,李文海③,等.RDX和HMX机械刺激临界反应阈值试验研究[J].爆破器材,2020,49(06):9-14.[doi:10.3969/j.issn.1001-8352.2020.06.002]
 WU Xingliang,WANG Hongsong,LI Wenhai,et al.Experimental Study on Critical Response Threshold of-RDX and HMX under Mechanical Stimulation[J].EXPLOSIVE MATERIALS,2020,49(06):9-14.[doi:10.3969/j.issn.1001-8352.2020.06.002]
点击复制

RDX和HMX机械刺激临界反应阈值试验研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
49
期数:
2020年06
页码:
9-14
栏目:
基础理论
出版日期:
2020-12-02

文章信息/Info

Title:
Experimental Study on Critical Response Threshold of-RDX and HMX under Mechanical Stimulation
文章编号:
5475
作者:
吴星亮王红松李文海徐飞扬蒋宇轩徐森刘大斌刘英 蔡佩成文峰
①南京理工大学化工学院(江苏南京,210094)
②南京海关危险货物与包装中心(江苏常州,213022)
③中国兵器工业火炸药工程与安全技术研究院(北京,100053)
④江西省赣华安全科技有限公司(江西南昌,330001)
Author(s):
WU Xingliang WANG Hongsong LI Wenhai XU Feiyang JIANG Yuxuan XU Sen LIU Dabin LIU Ying CAI Pei CHENG Wenfeng
①School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②Nanjing Customs Testing Center for Dangerous Goods and Packaging (Jiangsu Changzhou, 213022)
③Institute of Explosive Engineering and Safety Technology, China North Industries Group Co., Ltd. (Beijing, 100053)
④Jiangxi Ganhua Security Technology Co., Ltd. (Jiangxi Nanchang, 330001)
关键词:
含能材料撞击感度摩擦感度安全性
Keywords:
energetic materials impact sensitivity friction sensitivity safety
分类号:
TO560.7
DOI:
10.3969/j.issn.1001-8352.2020.06.002
文献标志码:
A
摘要:
为了研究RDX和HMX在机械刺激下的临界反应阈值以及丙酮重结晶工艺对它们的影响,采用BAM撞击感度仪和摩擦感度仪测试了不同温度条件下的临界撞击能量和临界摩擦力。结果显示,80、60、40 ℃和25 ℃下,RDX的临界撞击能量分别为5.0、7.5、7.5、7.5 J,HMX的分别为4.0、4.0、5.0、5.0 J;RDX的临界摩擦力分别为120、120、128、144 N,HMX的分别为108、108、108、120 N。丙酮重结晶后,RDX在25 ℃的临界撞击能量和临界摩擦力分别为5.0 J、128 N;HMX在80、60、40 ℃和25 ℃下的临界撞击能量均为7.5 J,临界摩擦力分别为108、108、120、128 N。撞击感度和摩擦感度的结果表明:在25~80 ℃范围内,RDX和HMX的机械感度随着温度的提高呈下降趋势,重结晶工艺对RDX和HMX的机械感度存在着一定的影响。
Abstract:
To study critical response threshold of RDX and HMX under mechanical stimulation and their variations under the influence of acetone recrystallization process, BAM fallhammer and BAM friction apparatus were used to test the critical impact energy and critical friction at different temperatures. Results show that, at 80, 60, 40 ℃ and 25 ℃, critical impact energies of RDX are 5.0, 7.5, 7.5, 7.5 J, and those of HMX are 4.0, 4.0, 5.0, 5.0 J, respectively. Critical frictions of RDX are 120, 120, 128, 144 N, and those of HMX are 108, 108, 108, 120 N, respectively. Afteracetone recrystallization, critical impact energy and the critical friction of RDX at 25 ℃ are 5.0 J and 128 N, respectively. Critical impact energies of HMX at 80, 60, 40 ℃ and 25 ℃ are 7.5 J, and critical frictional forces are 108, 108, 120 N and 128 N, respectively. Results of impact sensitivity and friction sensitivity indicate that the overall mechanical sensitivities of RDX and HMX show a downward trend with increasing temperature in the range of 25-80 ℃, and the recrystallization process has a certain influence on the mechanical sensitivity of RDX and HMX.

参考文献/References:

[1]TANG Y X, GAO H X, MITCHELL L A, et al. Enhancing energetic properties and sensitivity by incorporating amino and nitramino groups into a 1,2,4-oxadiazole building block[J]. Angewandte Chemie, 2016, 55(3): 1147-1150.?

[2]KLAP-TKE T M, KRUMM B, PFL-GER C. Isolation of a moderately stable but sensitive zwitterionic diazonium tetrazolyl-1, 2, 3-triazolate[J]. The Journal of Organic Chemistry, 2016, 81(14): 6123-6127.
[3]GRUHNE M S, LOMMEL M, WURZENBERGER M H H, et al. OZM ball drop impact tester (BIT-132) vs. BAM standard method: a comparative investigation[J]. Propellants, Explosives, Pyrotechnics, 2020, 45(1): 147-153.
[4]HE G S, YANG Z J, ZHOU X Y, et al. Polymer bonded explosives (PBXs) with reduced thermal stress and sensitivity by thermal conductivity enhancement with graphene nanoplatelets[J]. Composites Science and Technology, 2016, 131: 22-31.
[5]ZEMAN S, JUNGOVA M. Sensitivity and performance of energetic materials[J]. Propellants, Explosives, Pyrotechnics, 2016, 41(3): 426-451.
[6]金韶华, 王伟, 松全才. 含能材料机械撞击感度判据的认识和发展[J]. 爆破器材, 2006, 35(6):11-14.
JING S H, WANG W, SONG Q C. Understanding and development of criteria of impact sensitivity of energetic materials[J]Explosive Materials, 2006, 35(6):11-14.
[7]周群, 王伯周, 周诚,等. 球形化NTO晶体的制备及机械感度研究[J]. 化学推进剂与高分子材料, 2019, 17(2):23-26.
ZHOU Q, WANG B Z, ZHOU C, et al. Study on preparation of spherical NTO crystal and mechanical sensitivity[J]. Chemical Propellants & Polymeric Materials, 2019, 17(2):23-26.
[8]张正中, 唐秋凡, 邓重清,等. 不同粒度及包覆改性高氯酸铵的热分解性能和安全性能研究[J]. 化工新型材料, 2019, 47(5):160-163.
ZHANG Z Z, TAN Q F, DENG C Q, et al. Study on thermal decomposition and safety property of AP with different granularity and coating modification[J]. New Chemical Materials, 2019, 47(5):160-163.
[9]AN C W, LI H Q, YE B Y, et al. Nano-CL-20/HMX cocrystal explosive for significantly reduced mechanical sensitivity[J]. Journal of Nanomaterials, 2017, 2017:3791320.[10]XIE W X, ZHAO Y, ZHANG W, et al. Sensitivity and stability improvements of nepe propellants by inclusion of FOX-7[J]. Propellants, Explosives, Pyrotechnics, 2018, 43(3): 308-314.?
[11]刘玉存, 王建华, 安崇伟,等. RDX粒度对机械感度的影响[J]. 火炸药学报, 2004, 27(2):7-9.
LIU Y C, WANG J H, AN C W, et al. Effect of partical size of RDX on mechanical sensitivity[J]. Chinese Journal of Explosives and Propellants, 2004, 27(2):7-9.
[12]赵雪, 芮久后, 冯顺山.重结晶法制备球形化RDX[J]. 北京理工大学学报, 2011, 31(1):5-7.ZHAO X, RUI J H, FEN S S. Recrystallization method for preparation of spherical RDX[J]. Transactions of Beijing Institute of Technology. 2011, 31(1):5-7.
[13]张幺玄, 杨毅, 陈松,等. 含湿量对RDX的机械感度和热分解特性的影响[J]. 兵工自动化, 2017(7):5-8.
ZHANG Y X, YANG Y, CHEN S, et al. Effect of moisture content on mechanical sensitivity and thermal decomposition of RDX[J]. Ordnance Industry Automation, 2017(7):5-8.[14]中国兵器工业总公司.炸药试验方法:GJB772A—1997 [S].北京:国防科工委军标出版社,1997.
China North Industries Group Corporation.Explosive test method: GJB772A—1997[S]. Beijing: Military Standard Press of National Defense Science and Technology Commission, 1997.
[15]YANG Z J, DING L, WU P ,et al. Fabrication of RDX, HMX and CL-20 based microcapsules via in situ polymerization of melamine-formaldehyde resins with reduced sensitivity[J]. Chemical Engineering Journal,2015,268: 60-66.
[16]HUSSEIN A K, ELBEIH A, ZEMAN S. The effect of glycidyl azide polymer on the stability and explosive properties of different interesting nitramines[J]. RSC advances, 2018, 8(31): 17272-17278.?
[17] 晋永. 含能化合物高品质晶体及金属配合物制备研究[D].南京:南京理工大学,2015.
JIN Y. Study on the preparation of high quality crystal of energetic materials and their metallic complex[D]. Nanjing: Nanjing University of Science and Technology, 2015.
[18]司马天龙,燕吉胜.不同溶剂重结晶RDX对A5混合炸药压药成形性能的影响[J].火炸药学报, 2003,26(2):8-9.
SIMA T L, YAN J S. Effect of RDX re-crystallized RDX with different solvents on mechanical properties of composition A5[J]. Chinese Journal of Explosives & Propellants, 2003,26(2):8-9.
[19]赵瑞先,司马天龙,李玉积.RDX重结晶粒度分级工艺研究[C]//中国材料研究学会会议论文集.北京:冶金工业出版社,2002.

相似文献/References:

[1]花成,张盛国,文雯,等.炸药低速撞击试验的分析与讨论[J].爆破器材,2010,39(05):1.
 HUA Cheng,ZHANG Shengguo,WEN Wen,et al.Analysis and Discussion on Low Velocity Impact Test of Explosive[J].EXPLOSIVE MATERIALS,2010,39(06):1.
[2]薛艳,任小明,解瑞珍,等.硅基含能材料爆炸性能研究[J].爆破器材,2011,40(05):12.
 XUE Yan,REN Xiaoming,XIE Ruizhen,et al.Explosion Properties of Nanosiliconbased Energetic Materials[J].EXPLOSIVE MATERIALS,2011,40(06):12.
[3]张涛,陈明华,贾昊楠,等.热分解动力学在含能材料中的应用[J].爆破器材,2013,42(06):52.[doi:10.3969/j.issn.1001-8352.2013.06.011]
 ZHANG Tao,CHEN Minghua,JIA Haonan,et al.Application of Thermal Decomposition Kinetics in Energetic Materials[J].EXPLOSIVE MATERIALS,2013,42(06):52.[doi:10.3969/j.issn.1001-8352.2013.06.011]
[4]陈言坤①,甄建伟①,武慧恩②,等.粒状发射药动态破碎研究进展[J].爆破器材,2014,43(01):41.[doi:10.3969/j.issn.1001-8352.2014.01.009]
 CHEN Yankun,ZHEN Jianwei,WU Huien,et al.Research Progress of Dynamic Fracture of Granular Propellant[J].EXPLOSIVE MATERIALS,2014,43(06):41.[doi:10.3969/j.issn.1001-8352.2014.01.009]
[5]马宁,苏杨,秦能,等.1L慢烤燃装置温场分布数值模拟与试验研究[J].爆破器材,2014,43(03):14.[doi:10.3969/j.issn.1001-8352.2014.03.004]
 MA Ning,SU Yang,QIN Neng,et al.Numerical Simulation and Experimental Study of Temperature Field Distribution in 1L Slow Cook-off Device[J].EXPLOSIVE MATERIALS,2014,43(06):14.[doi:10.3969/j.issn.1001-8352.2014.03.004]
[6]赵娟,徐洪涛,冯晓军.装药条件对B炸药落锤撞击响应的影响研究[J].爆破器材,2014,43(06):6.[doi:10.3969/j.issn.1001-8352.2014.06.002]
 ZHAO Juan,XU Hongtao,Feng Xiaojun.Effects of Charge Conditions on the Drop Hammer Impact Response of Composition B[J].EXPLOSIVE MATERIALS,2014,43(06):6.[doi:10.3969/j.issn.1001-8352.2014.06.002]
[7]葛亚庆,许田田,杨君龙,等.5-氨基四唑/氧化铜气体发生剂燃烧性质的研究[J].爆破器材,2014,43(06):35.[doi:10.3969/j.issn.1001-8352.2014.06.008]
 GE Yaqing,XU Tiantian,YANG Junlong,et al.Study on Combustion Performance of 5Aminotetrazole/Copper Oxide Gasgenerating Agent[J].EXPLOSIVE MATERIALS,2014,43(06):35.[doi:10.3969/j.issn.1001-8352.2014.06.008]
[8]花成①,张艳丽①,姚奎光①,等.低感炸药低爆炸响应点测试研究[J].爆破器材,2015,44(01):12.[doi:10.3969/j.issn.1001-8352.2015.01.003]
 HUA Cheng,ZHANG Yanli,YAO Kuiguang,et al.Test on Low Percentiles of Low Sensitive Explosive at Firing Level[J].EXPLOSIVE MATERIALS,2015,44(06):12.[doi:10.3969/j.issn.1001-8352.2015.01.003]
[9]鲁学峰①,卫延安①②.N,N-双四唑胺的合成工艺改进与研究[J].爆破器材,2015,44(02):14.[doi:10.3969/j.issn.1001-8352.2015.02.004]
 LU Xuefeng,WEI Yanan.Study and Improvement of the Synthesis of N,N-Bis(1H-tetrazol-5-yl)amine[J].EXPLOSIVE MATERIALS,2015,44(06):14.[doi:10.3969/j.issn.1001-8352.2015.02.004]
[10]盛涤伦,陈利魁,朱雅红,等.耐高温起爆药叠氮化镉的合成与性能研究[J].爆破器材,2015,44(03):12.[doi:10.3969/j.issn.1001-8352.2015.03.003]
 SHENG Dilun,CHEN Likui,ZHU Yahong,et al.Synthesis and Performance of a Primary Explosive Resisting High Temperature Named Cadmium Azide[J].EXPLOSIVE MATERIALS,2015,44(06):12.[doi:10.3969/j.issn.1001-8352.2015.03.003]

备注/Memo

备注/Memo:
收稿日期:2020-04-28
第一作者:吴星亮(1994-),男,博士,主要从事炸药性能及炸药爆炸输出特性研究。E-mail:wuxingliang94@163.com
通信作者:徐森(1981-),男,副教授,硕导,主要从事爆炸力学的研究。E-mail:xusen@njust.edu.cn
更新日期/Last Update: 2020-12-01