[1]王茂,韩志伟,李亚宁,等.基于虚拟仪器的慢速烤燃系统的设计及应用[J].爆破器材,2020,49(03):37-42.[doi:10.3969/j.issn.1001-8352.2020.03.007]
 WANG Mao,HAN Zhiwei,LI Yaning,et al.Design and Application of a Slow Cook-off System Based on Virtual Instrument[J].EXPLOSIVE MATERIALS,2020,49(03):37-42.[doi:10.3969/j.issn.1001-8352.2020.03.007]
点击复制

基于虚拟仪器的慢速烤燃系统的设计及应用()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
49
期数:
2020年03
页码:
37-42
栏目:
爆炸材料
出版日期:
2020-05-22

文章信息/Info

Title:
Design and Application of a Slow Cook-off System Based on Virtual Instrument
文章编号:
5415
作者:
王茂韩志伟李亚宁李宏伟陈坤王伯良
南京理工大学化工学院(江苏南京,210094)
Author(s):
WANG Mao HAN Zhiwei LI Yaning LI Hongwei CHEN Kun WANG Boliang
School of Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
慢速烤燃系统混合炸药升温速率热不敏感性
Keywords:
slow cook-off system component explosives heating rate thermal insensitivity
分类号:
TQ560
DOI:
10.3969/j.issn.1001-8352.2020.03.007
文献标志码:
A
摘要:
为了满足不敏感炸药的发展需求,在GJB 772A—1997及行业内标准烤燃装置的基础上,设计并开发了一套慢速烤燃系统。该系统基于LabVIEW程序的控制软件,由以控制器、数据采集卡、热电偶及数字I/O卡等为主的典型硬件构成。参照美军标MIL—STD—2105D和国内行业标准,对该系统的适用性开展了试验研究;采用RDX基与HMX基两种典型的混合炸药装药进行了慢速烤燃试验。结果表明,该慢速烤燃系统具有广泛的温度适用范围,试验数据拟合相关系数不低于0.999 8,在0.055、0.200、1.000、2.000 ℃/min和3.000 ℃/min等几种升温速率条件下,炸药均能实现较高精度的线性升温。与RDX基混合炸药相比,HMX基混合炸药响应程度有所缓和。该慢速烤燃系统满足试验需求,可为研究炸药的热不敏感性提供有效手段。
Abstract:
In order to meet the development demand of the insensitive explosives, a slow cook-off system was designed and fabricated based on GJB 772A—1997 and industry standards. The system consisted of a control software developed by LabVIEW program and several typical hardware, including controller, data acquisition card, thermocouple, digital I/O card. According to US military standard MIL—STD—2105D and the domestic industry standard, the applicability of the system was studied experimentally. RDX-based and HMX-based component explosives, two typical explosives, were tested by employing this system. Results showed that this system had a good feasibility in an extensive temperature range. Correlation coefficient of fitting test date could be up to 0.999 8. Specifically, this system presented high precision in a linear heating up process when the heating rates were 0.055, 0.200, 1.000, 2.000 ℃/min and 3.000 ℃/min respectively. Compared with RDX-based component explosive, the response of HMX-based component explosive is moderated. This slow cook-off system could satisfy the experimental requirements, which provided an effective mean for studying the thermal insensitivity of the component explosives.

参考文献/References:

[1]蒋超, 闻泉, 王雨时, 等. 不敏感弹药烤燃试验技术综述[J]. 探测与控制学报, 2019, 41(2): 1-9.
JIANG C, WEN Q, WANG Y S, et al. An overview on cook-off test technology for insensitive munitions[J]. Journal of Detection & Control, 2019, 41(2): 1-9.
[2]董海山. 钝感弹药的由来及重要意义[J]. 含能材料, 2006, 14(5): 321-322.
DONG H S. The importance of the insensitive munitions[J]. Chinese Journal of Energetic Materials, 2006, 14(5): 321-322.
[3]高飞, 刘俊学, 侯旷怡. 钝感弹药评估标准发展与试验应用[J]. 四川兵工学报, 2013,34(8): 46-48.
GAO F, LIU J X, HOU K Y. The development and experimental application of evaluative standard of insensitive ammunitom[J]. Journal of Sichuan Ordnance, 2013,34(8): 46-48.
[4]王震宇, 杜力民, 冯成良, 等. 国外钝感弹药发展脉络及其启示[C]//2014’(第六届)含能材料与钝感弹药技术学术研讨会论文集. 成都, 2014: 244-248.
[5]许蕾, 张鹏. 国内外钝感弹药评估标准的发展与分析[J]. 航天标准化, 2010(4): 35-37.
[6]殷瑱, 闻泉, 王雨时, 等. 北约不敏感弹药标准试验方法[J]. 兵器装备工程学报, 2016, 37(10): 1-7.
YIN Z, WEN Q, WANG Y S, et al. Standard experiment method of insensitive munition in NATO[J]. Journal of Ordnance Equipment Engineering, 2016, 37(10): 1-7.
[7]梁晓璐, 梁争峰, 程淑杰, 等. 不敏感弹药试验方法及评估标准研究进展[J]. 飞航导弹, 2016(6): 84-87.
[8]陈朗, 马欣, 黄毅民, 等. 炸药多点测温烤燃实验和数值模拟[J]. 兵工学报, 2011,32(10): 1230-1236.
CHEN L, MA X, HUANG Y M, et al. Multi-point temperature measuring cook-off test and numerical simulation of explosive[J].Acta Armamentarii,2011,32(10): 1230-1236.
[9]徐洪涛, 金朋刚. 炸药缓慢加热条件实验技术进展[J]. 装备环境工程, 2019, 16(9): 5-17.
XU H T, JIN P G. Development of slower cook-off test for explosives[J]. Equipment Enviromental Engineering, 2019, 16(9): 5-17.
[10]SECHMITS G T. ODTX test program:MHSMP-8040 [R]. 1980.
[11]KENT R, RAT M. Eplosive thermique (cook off) despropergols solides[J]. Propellants, Explosives, Pyrotechnics,1982, 7(5): 129-136.
[12]SLAPE R J. IHE material qualification tests description and criteria: MHSMP-84-22 [R]. 1984.
[13]NATO Standardization Agency Slow heating, munitions test procedures:STANAG 4382[S]. Brussels: NATO, 2003.
[14]向梅, 黄毅民, 饶国宁, 等. 不同升温速率下复合药柱烤燃实验与数值模拟研究[J]. 爆炸与冲击, 2013, 33(4): 394-400.
XIANG M, HUANG Y M, RAO G N, et al. Cook-off test and numerical simulation for composite charge at different heating rate[J]. Explosion and Shock Waves, 2013,33(4): 394-400.
[15]姚奎光, 钟敏, 代晓淦, 等. 缓慢热作用下PBX-9炸药的响应特性[J]. 火炸药学报, 2015, 38(6): 56-60.
YAO K G, ZHONG M, DAI X G, et al. Response characterstics of PBX-9 explosive under slow thermal stimulus[J]. Chinese Journal of Explosive & propellants, 2015, 38(6): 56-60.
[16]于永利, 智小琦, 范兴华, 等. 自由空间对炸药慢烤响应特性影响的研究[J]. 科学技术与工程,2015,15(5):280-283.
YU Y L, ZHI X Q, FAN X H, et al. The research of free-space influence on response characteristics of explosive on slow cook-off condition[J]. Science Technology and Engineering, 2015,15(5):280-283.
[17]中国兵器工业总公司. 炸药试验方法:GJB 772A—1997[S]. 北京,1997.
[18]Hazard assessment tests for non-nuclear munitions: MIL—STD—2105D [S]. 2011.

相似文献/References:

[1]黄亚峰,王晓峰,冯晓军,等.高温耐热炸药的研究现状与发展[J].爆破器材,2012,41(06):1.[doi:10.3969/J.ISSN.1001-8532.2012.06.001]
 HUANG Yafeng,WANG Xiaofeng,FENG Xiaojun,et al.Preset Research and Perspective of the Hightemperature Heatresistance Explosive[J].EXPLOSIVE MATERIALS,2012,41(03):1.[doi:10.3969/J.ISSN.1001-8532.2012.06.001]

备注/Memo

备注/Memo:
收稿日期:2019-10-10
基金项目:江苏省自然科学基金青年基金项目(BK20150780);江苏高校优势学科建设工程资助项目
第一作者:王茂(1994-),男,硕士研究生,研究方向为温压炸药热安全分析。E-mail:1498012088@qq.com
通信作者:王伯良(1964-),男,教授,主要从事爆炸理论及其应用研究。E-mail:boliangwang@163.com
更新日期/Last Update: 2020-05-22