[1]赵旭①②.深层水平井多级复合深穿透定向射孔技术应用研究[J].爆破器材,2019,48(06):43-47.[doi:10.3969/j.issn.1001-8352.2019.06.009]
 ZHAO Xu.Application of Multi-stage Composite Deep Penetration Directional Perforation Technology for Deep Horizontal Wells[J].EXPLOSIVE MATERIALS,2019,48(06):43-47.[doi:10.3969/j.issn.1001-8352.2019.06.009]
点击复制

深层水平井多级复合深穿透定向射孔技术应用研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
48
期数:
2019年06
页码:
43-47
栏目:
爆炸材料
出版日期:
2019-12-09

文章信息/Info

Title:
Application of Multi-stage Composite Deep Penetration Directional Perforation Technology for Deep Horizontal Wells
文章编号:
5329
作者:
赵旭①②
①中国石化石油工程技术研究院(北京,100101)
②页岩油气富集机理与有效开发国家重点实验室(北京,100101)
Author(s):
ZHAO Xu①②
① Sinopec Research Institute of Petroleum Engineering (Beijing, 100101)
② State Key Laboratory of Shale Oil and Gas Enrichment Mechanisms and Effective Development (Beijing, 100101)
关键词:
水平井复合射孔气体压裂施工工艺现场应用
Keywords:
horizontal well composite perforation gas fracturing construction technology field application
分类号:
TE257
DOI:
10.3969/j.issn.1001-8352.2019.06.009
文献标志码:
A
摘要:
深层水平井多级复合深穿透定向射孔技术利用深穿透射孔和定向高能气体压裂技术在油层部位形成沟通孔眼及多个辐射状径向裂缝,以扩大泄油面积和降低生产压降。分析了该技术的原理,根据技术适用性对试验井进行选井选层论证,在此基础上提出了试验井的多级复合深穿透定向射孔设计方案,并从试验准备及施工工艺方面论述了试验井的现场实施情况。试验结果表明,施工过程达到了方案设计要求,试验井的产油量得到了提升,产油量由措施前的0.4 t/d提高到7.2 t/d;含水率有了明显的下降,产液量由措施前的33.4 t/d降到了7.8 t/d。分析认为,该技术成功的关键是射孔压裂深度、方位的控制、选井选层的合理性。该技术的成功应用为老油田剩余油挖潜提供一种经济、高效的途径,具有一定的应用前景。
Abstract:
Deep penetration composite directional perforation technology in horizontal wells applies deep penetrating perforation and high energy gas fracturing to form a plurality of radial hole in the reservoir, thereby to enlarge the drainage area and decrease production pressure. Such technical principles were analyzed, and based on the technical applicability, tested well was selected. Accordingly, a deep composite directional perforation design plan was proposed on the tested well, and oilfield operation situation of tested well was detailed illuminated from the test preparation to construction techniques. The test results show that construction technology has met the design requirement, oil production of the tested well increases from 0.4 t/d to 7.2 t/d, and water content obviously decreases from 33.4 t/d to 7.8 t/d. By comprehensive analysis, the key factors of deep penetration composite directional perforation in horizontal well are fracturing depth, perforation orientation, well situation and reservoir condition. The successful application of this technology provides an economical and efficient way for producing the remaining oil potential in old oilfields, and it has a good application prospect.

参考文献/References:

[1]孙新波,刘辉,王宝兴,等.复合射孔技术综述[J].爆破器材,2007,36(5):29-32.
SUN X B,LIU H,WANG B X,et al. Review of propellant perforation techniques[J]. Explosive Materials,2007,36(5) : 29-32.
[2]林英松,张宝康,蒋金宝,等. 爆生气体作用下孔壁岩石开裂的机理及影响因素研究[J].石油钻探技术,2008, 36(3) : 50-54.
LIN Y S,ZHANG B K,JIANG J B,et al.Mechanism and influencing factors on radial fractures cracking and propagation under exploding gas[J].Petroleum Drilling Techniques,2008,36(3) : 50-54.
[3]张飞,贾居红,蔡薇.复合射孔器爆燃气体压力计算模型[J].兵工自动化,2016, 35(12): 41-44.
ZHANG F,JIA J H, CAI W.Calculation model for detonation gas pressure in compound perforation[J]. Ordnance Industry Automation,2016,35(12): 41-44.
[4]刁刚田,刘志华,周家驹,等.复合射孔技术的应用[J].钻采工艺,2003,26(6):30-33.
DIAO G T,LIU Z H,ZHOU J J,et al.The application of compound perforation technology [J].Drilling & Production Technology,2003,26(6):30-33.
[5]李海涛,罗伟,姜雨省,等.复合射孔爆燃气体压裂裂缝起裂扩展研究[J].爆炸与冲击,2014,34(3):307-314.
LI H T, LUO W, JIANG Y S,et al.Initiation and extension of gas-driven fracture during compound perforation[J].Explosion and Shock Waves,2014,34(3):307-314.
[6]李克明.高能复合射孔技术及应用前景[J].石油钻探技术,2002,30(3):72-74.
LI K M. High power,multiplex perforation technique and its prospect[J]. Petroleum Drilling Techniques, 2002,30(3):72-74.
[7]李东传,金成福,刘权民,等.复合射孔检测技术现状及其发展趋势[J].测井技术,2011,35(2):164-166.
LI D C,JIN C F,LIU Q M,et al.Status and trend of compound perforation test technology[J].Well Logging Technology,2011,35(2):164-166.
[8]赵旭,丁士东,周仕明.复合射孔气液作用后气体上移运动规律实验研究[J].测井技术,2011,35(2):167-170,191.
ZHAO X,DING S D,ZHOU S M.Experimental study on gas movement mechanism in wellbore after compound perforation [J].Well Logging Technology,2011,35(2):167-170,191.
[9]练章华,丁士东,赵旭,等. 元坝气井射孔完井近井壁渗流场分析[J]. 西南石油大学学报(自然科学版),2013, 36(6):173-180.
LIAN Z H,DING S D,ZHAO X,et al. Analysis of the fluid flow field near wellbore wall of gas-well perforated completion in Yuanba[J]. Journal of Southwest Petroleum University (Science & Technology Edition),2013,36(6):173-180.
[10]张国按,孙志明.高能复合射孔(FracGun)在国外A油田的应用[J].石油钻探技术,2006,34(1):62-64.
ZHANG G A,SUN Z M.Application of fracgun in an overseas oilfield[J]. Petroleum Drilling Techniques,2006,34(1):62-64.
[11]项忠华.射孔压裂参数优化设计研究[D].北京:中国石油大学(北京),2002.
[12]赵旭,柳贡慧,张涛.不同体积高压气体对复合射孔压井液运动的影响[J].石油学报,2009,30(2):295-299.
ZHAO X,LIU G H,ZHANG T.Movement mechanism of control fluid in propellant perforation under the action of downhole high-pressure gas[J].Acta Petrolei Sinica,2009,30(2):295-299.

备注/Memo

备注/Memo:
收稿日期:2019-02-11
基金项目:国家科技重大专项课题,海相碳酸盐岩超深油气井关键工程技术(2017ZX05005-005);中石化科技部推广项目,自适应调流控水完井技术推广与工业化应用(P16117)
第一作者:赵旭(1981-),男,高工,主要从事井筒内复杂流动与控制、现代完井工程方面的研究。E-mail:zhaoxu46@163.com
更新日期/Last Update: 2019-12-04