[1]田轩,冯晓军,封雪松,等.国外高能炸药点火机理研究进展[J].爆破器材,2014,43(01):49-56.[doi:10.3969/j.issn.1001-8352.2014.01.010]
 TIAN Xuan,FENG Xiaojun,FENG Xuesong,et al.Research Progress on the Mechanism of the Ignition for the High Explosives[J].EXPLOSIVE MATERIALS,2014,43(01):49-56.[doi:10.3969/j.issn.1001-8352.2014.01.010]
点击复制

国外高能炸药点火机理研究进展()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
43
期数:
2014年01
页码:
49-56
栏目:
出版日期:
2014-02-20

文章信息/Info

Title:
Research Progress on the Mechanism of the Ignition for the High Explosives
文章编号:
4662
作者:
田轩冯晓军封雪松徐洪涛冯博王晓峰
西安近代化学研究所(陕西西安,710065)
Author(s):
TIAN Xuan FENG Xiaojun FENG Xuesong XU Hongtao FENG Bo WANG Xiaofeng
Xian Modern Chemistry Research Institute (Shaanxi Xian, 710065)
关键词:
高能炸药点火机理非冲击起爆点火和反应增长模型热爆炸
Keywords:
high explosive ignition mechanism nonshock ignition the ignition and reactive growth model thermal explosion
分类号:
TQ564
DOI:
10.3969/j.issn.1001-8352.2014.01.010
文献标志码:
A
摘要:
高能炸药发生点火反应由3个主要的能量转移过程引起:摩擦或剪切热、自加热、冲击压缩。炸药发生反应的剧烈程度由缓慢燃烧到完全爆轰不等,而这主要取决于能量转移率、炸药的理化性能、壳体约束强度等变量。该文重点从撞击点火、热爆炸、弱冲击压缩和强冲击压缩(分为均质炸药和非均质炸药)等方面综述了国外近年来在高能炸药点火方面的研究进展,以炸药在撞击、热、冲击刺激下的试验方法和数学建模方法为主,同时介绍了最新的实验和仿真研究成果。
Abstract:
Ignition reactions of high explosives can be caused by three general energy transfer processes: impact ignition by frictional or shear heating, thermal heating and shock compression. The degree of violence of reaction varies from benign slow combustion to detonation of entire charge, that depends on many variables, including the rate of energy delivery, the physical and chemical properties of the explosive, and the strength of the confinement surrounding the explosive charge. This article focuses on foreign research progress of homogeneous and nonhomogeneous explosives in recent years in terms of impact ignition, thermal explosion, weak shock compression and strong shock compression. Meanwhile, the latest achievements on experimental and mathematical modeling regarding the ignition mechanism of explosives under the impact, thermal and shock stimulus are introduced.

参考文献/References:

[1]Dienes J K. A unified theory of flow, hot spots,and fragmentation, with an application to explosive sensitivity[M]//High Pressure Shock Compression of Solids II. New York: Springer, 1996:366-398 .
[2]Dienes J K. Frictional hot spots and propellant sensitivity[C]//Proceedings of Materials Research Society Symposium. 1984: 373-383.
[3]Dienes J K, Kershner J D. Multipleshock initiation via statistical crack mechanics[C]//Proceedings of the 11th Detonation Symposium. Snowmass,CO:Office of Naval Research, 1998: 717-724.
[4]Dienes J K, Middleditch J, Kershner J D, et al. Progress in statistical crack mechanics:an approach to initiation[C]//Proceddings of the 12th International Detonation Symposium. San Diego,CA:Office of Naval Research, 2002: 793-799.
[5]Browning R V. Microstructural model of mechanical initiation of energetic materials[J]. AIP Conference Proceedings,1996,370:405-408.
[6]Field J E. Hot spot ignition mechanisms for explosives[J]. Accounts of Chemical Research, 1992,25(11):489-496.
[7]Field J E, Bourne N K, Palmer S J P. Hotspot ignition mechanisms for explosives and propellants[J]. Philosophical Transactions of the Royal Society A, 1992,339:269- 283.
[8]Bowden F P, Yoffe A D. Ignitiation and growth of explosion in liquids and solids [M]. Cambridge: Cambridge University Press, 1952.
[9]Armstrong R W, Elban W L. Materials science and technology aspects of energetic (explosive) materials[J]. Materials Science and Technology, 2006,22(4):381-395.
[10]Armstrong R W. Dislocationassisted initiation of energetic materials[J]. Central European Journal of Energetic Materials, 2005,2(3):21-37.
[11]Vandersall K S, Chidester S K, Forbes J W, et al. Experimental and modeling studies of crush, puncture, and perforation scenarios in the Steven impact test[C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA:Office of Naval Research, 2002:131-139.
[12]Scammon R J, Browning R V, Middleditch J, et al. Low amplitude insult project:structural analysis and prediction of low order reaction[C]//Proceedings of the 11th International Detonation Symposium. Snowmass, CO:Office of Naval Research,1998:111-118.
[13]Dey T N, Kamm J R. Numerical modeling of shear band formation in PBX9501[C]//Proceedings of the 11th Intematonal Detonation Symposium. Snowmass, CO:Office of Naval Research,1998:725-743.
[14]Czerski H, Perry W L, Dickson P M. Solid state phase change in HMX during dropweight impact[C]//Proceedings of the 13th International Detonation Symposium.Norfolk, VA:Office of Naval Research, 2006: 681-688.
[15]-Frey R B. The initiation of explosive charges by rapid shear[C]//Proceedings of the 7th International Detonation Symposium. Annapolis,MA:Office of Naval Research, 1981:36-42.
[16]Nichols A L, Tarver C M. A statistical hot spot reactive flow model for shock initiation and detonation of solid high explosives[C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002:489-498.
[17]Idar D J, Straight J W, Osborn M A, et al. Low amplitude impact of damaged PBX 9501[J]. AIP Conference Proceedings,1999,505:655-658.
[18]Idar D J, Lucht R A, Straight J W, et al. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments[C]//Proceedings of the 11th International Detonation Symposium. Snowmass,CO:Office of Naval Research, 1998: 101-110.
[19]Chidester S K, Tarver C M, Depiero A H, et al. Single and multiple impact ignition of new and aged high explosives in the steven impact test[J]. AIP Conference Proceedings, 1999,505:663-666.
[20]Chidester S K, Traver C M, Garza R. Low amplitude impact testing and analysis of pristine and aged solid high explosives[C]//Proceedings of the 11th International Detonation Symposium. Snowmass,CO:Office of Naval Research, 1998: 93-100.
[21]Field J E, Parry M A, Palmer S J P, et al. Deformation and explosive properties of HMX powders and polymer bonded explosives[C]//Morat W J. Proceedings of the 9th International Symposium. Portland,OR: Office of Naval Research, 1989: 886-896.
[22]Chidester S K, Green L G, Lee C G. A frictional work predictive method for the initiation of solid high explosives from low pressure impacts[C]//Proceedings of the 10th International Detonation Symposium. Boston,MA: Office of Naval Research, 1993: 785-792.
[23]Wortley S, Jones A, Cartwright M, et al. Low speed impact of pristine ang aged solid high explosive[C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002:399-408.
[24]Browning R V, Scammon R J. Influence of mechanical properties on nonshock ignition[C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002:149-158.
[25]Partom Y. A threshold criterion for impact ignition [C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002: 831-835.
[26]Hunt E M, Malcolm S, Pantoya M L, et al. Impact ignition of nano and micron composite energetic materials[J].International Journal of Impact Engineering, 2009,36(6):842-846.
[27]Chowdhury S. Probing the ignition mechanism of aluminum nanothermites[D]. Maryland: University of Maryland, 2012: 58-60.
[28]Mader C L, Forest C A. Two dimensional homogeneous and heterogeneous wave propagation [C]//Edwards D J.Proceedings of the 6th International Detonation Symposium. Coronado,CA:Office of Naval Research,1976:405-413.
[29]Johnson J N, Tang P K, Forest C A.Shock wave initiation of heterogeneous reactive solids[J]. Journal of Applied Physics, 1985,57(9):4323-4334.
[30]Starkenberg J. Modeling detonation propagation and failure using explosive initiation models in a conven tional hydrocode [C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002: 1001-1007.
[31]Lee E L, Tarver C M. Phenomenological model of shock initiation in heterogeneous explosives[J]. Physics of Fluids, 1980,23(12): 2362-2372.
[32]Tarver C M. Ignition and growth modeling of LX17 hockey puck experiments[J]. Propellants,Explosives, Pyrotechnics, 2005,30(2):109-117.
[33]Souers P C, Garza R, Vitello P. Ignition and growth and JWL detonation models in coarse zones[J]. Propellants, Explosives, Pyrotechnics, 2002,27(2): 62-71.
[34]Souers P C, Andreski H G,Cook Ⅲ C F,et al. LX17 cornerturning[J]. Propellants, Explosives, Pyrotechnics, 2004,29(6): 359-367.
[35]Souers P C, Andreski H G, Betteux J, et al. Dead zones in LX17 and PBX 9502[J]. Propellants,Explosives, Pyrotechnics, 2006,31(2): 89-97.
[36]Whitworth N J, Maw J R. Modelling shock desensitization of heterogeneous explosives[J]. AIP Conference Proceedings, 1996, 370: 425-428.
[37]Garcia F, Vandersall K S, Tarver C M. Shock initiation experiments with ignition and growth modeling on low density HMX[C]//18th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter Held in Conjunction with the 24th Biennial International. Conference of the International Association for the Advancement of High Pressure Science and Technology (AIRAPT). Washington: American Physical Society, 2013.
[38]Tarver C, Chidester S. Ignition and growth modeling of short pulse duration shock initiation experiments on HNS IV[C]//18th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter Held in Conjunction with the 24th Biennial International. Conference of the International Association for the Advancement of High Pressure Science and Technology(AIRAPT). Washington: American Physical Society, 2013.
[39]May C, Tarver C. Short shock pulse duration experiments plus ignition and growth modeling on composition B[C]//18th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter Held in Conjunction with the 24th Biennial International. Conference of the International Association for the Advancement of High Pressure Science and Technology (AIRAPT). Washington: American Physical Society, 2013.
[40]Wardell J F, Maienschein J L. The scaled thermal explosion experiment [C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA:Office of Naval Research, 2002:384-393.
[41]Forbes J W, Garcia F, Tarver C M, et al. Pressure wave measurements during thermal explosion of HMXbased high explosives [C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002:837-845.
[42]Maienschein J L, DeHaven M R, Sykora G B, et al. Thermal explosion violence for several explosives measurements and interpretations [C]//Proceedings of the 13th International Detonation Symposium. Norfolk,VA:Office of Naval Research, 2006:536-545.
[43]Maienschein J L, Chandler J B. Burn rates of pristine and degraded explosives at elevated pressures and temperatures [C]//Proceedings of the 11th International Detonation Symposium. Snowmass,CO: Office of Naval Research, 1998:872-882.
[44]Chidester S K, Tarver C M, Green L G, et al. On the violence of thermal explosion in solid explosives[J]. Combustion and Flame, 1997,110(1-2): 264-280.
[45]Yoh J J, McClelland M A. Simulating the thermal response of high explosives on time scales of days to micriseconds[J]. AIP Conforence Proceedings, 2004,706:425428.
[46]Tarver C M, Tran T D. Thermal decomposition models for HMXbased plastic bonded explosives[J]. Combustion and Flame, 2004,137(12): 50-62.
[47]Nichols III A L, Anderson A, Neely R,et al. A model for high explosives cookoff [C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA:Office of Naval Research, 2002:94-102.
[48]Tarver C M. Chemical kinetic modeling of HMX and TATB laser ignition tests[J]. Journal of Energetic Materials, 2004,22(2):93-107. 
[49] Nichols III A L, Couch R, McCallen R C, et al. Modeling thermally driven energetic response of high explosives [C]//Proceedings of the 11th International Detonation Symposium. Snowmass,CO:Office of Naval Research, 1998: 862-871. 
[50]Yoh J J, McClelland M A, Maienschein J L, et al. Simulating thermal explosion of octahydrotetranitrote trazine (HMX)based explosives: model comparison with experiment[J]. Journal of Applied Physics, 2006,100(7):073515.
[51]Maienschein J L, Wardell J F, DeHaven M R, et al. Deflagration of HMXbased explosives at high temperatures and pressures[J]. Propellants, Explosives, Pyrotechnics, 2004,29(5):287-295.
[52]Maienschein J L, Wardell J F, Weese R K, et al. Understanding and predicting the thermal explosion violence of HMXbased and RDXbased explosivesexperimental measurements of material properties and reaction violence [C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002:846-855. 
[53]Henson B F, Smilowitz L B, Asay B W, et al. An ignition law for PBX 9501 from thermal explosion to detonation [C]//Proceedings of the 13th International Detonation Symposium. Norfolk,VA:Office of Naval Research,2006:778-785.
[54] Nichols III A L. A model for thermal cookoff and detonation of high explosives [C]//Proceedings of the 13th International Detonation Symposium. Norfolk,VA: Office of Naval Research, 2006:1151-1160. 
[55]Smilowitz L, Henson B F, Romero J J, et al. The evolution of solid density within a thermal explosion. I. Proton radiography of preignition expansion, material motion, and chemical decomposition[J]. Journal of Applied Physics,2012,111(10):103515. 
[56]Smilowitz L, Henson B F, Romero J J, et al. The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning[J]. Journal of Applied Physics,2012,111(10):103516. 
[57]Campbell A W, Travis J R. The shock desensitization of PBX 9404 and Composition B3 [C]//Proceedings of the 8th International Detonation Symposium. Albu querque, NM:Office of Naval Research, 1985: 1057-1068. 
[58]Meyers M A. A mechanism for dislocation generation in shockwave deformation [J]. Scripta Metallurgica, 1978,12(1): 21-26.
[59]Dick J J. Anomalous shock initiation of detonation in pentaerythritol tetranitrate crystals[J].Journal of Applied Physics, 1997,81 (2): 601-612.
[60]Dick J J. Shockwave behavior in explosive monocrystals[J]. Journal de Physique Ⅳ, 1995,5:103-106.
[61]Dreger Z A, Gruzdkov Y A, Gupta Y M, et al. Shock wave induced decomposition chemistry of pentaerythritol tetranitrate single crystals: timeresolved emission spectroscopy[J]. The Journal of Physical Chemistry B, 2002,106(2): 247-256.
[62]Hooks D E, Ramos K J. Initiation mechanisms in single crystal explosives: dislocations, elastic limits,and initiation thresholds [C]//Proceedings of the 13th International Detonation Symposium. Norfolk,VA:Office of Naval Research, 2006: 455-464.
[63]Fedorov A V, Zotov E V, Krasovsky A V, et al. Detonation front in homogenous and heterogeneous high explosives[J]. AIP Conference Proceedings, 2000,505: 801-804. [64]Fedorov A V. Detonation wave structure in liquid homogeneous,solid heterogeneous and agatized HE[C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002: 229-233.

相似文献/References:

[1]屈可朋,王晓峰,何超,等.撞击条件下分步压装装药的点火机理[J].爆破器材,2016,45(03):22.[doi:10.3969/j.issn.1001-8352.2016.03.005]
 QU Kepeng,WANG Xiaofeng,HE Chao,et al.Ignition Mechanism of Step Press Loading Charge under Impact Loading[J].EXPLOSIVE MATERIALS,2016,45(01):22.[doi:10.3969/j.issn.1001-8352.2016.03.005]
[2]常剑①,俞永华②,魏晓安①,等.利用含废弃丁羟推进剂制备的高能炸药[J].爆破器材,2017,46(01):29.[doi:10.3969/j.issn.1001-8352.2017.01.006]
 CHANG Jian,YU Yonghua,WEI Xiaoan,et al.A High Explosive Prepared by Obsolete HTPB Propellant[J].EXPLOSIVE MATERIALS,2017,46(01):29.[doi:10.3969/j.issn.1001-8352.2017.01.006]

备注/Memo

备注/Memo:
收稿日期:2013-04-01
基金项目:2013年度火炸药燃烧国防科技重点实验室基金项目(9140C350406130C35126)
作者简介:田轩(1987~),男,硕士,研究方向为炸药安全及能量性能评估技术。
通信作者:冯晓军(1976~),男,博士,高级工程师,研究方向为炸药安全及能量性能评估技术。
更新日期/Last Update: 2014-02-28