参考文献/References:
[1]Dienes J K. A unified theory of flow, hot spots,and fragmentation, with an application to explosive sensitivity[M]//High Pressure Shock Compression of Solids II. New York: Springer, 1996:366-398 .
[2]Dienes J K. Frictional hot spots and propellant sensitivity[C]//Proceedings of Materials Research Society Symposium. 1984: 373-383.
[3]Dienes J K, Kershner J D. Multipleshock initiation via statistical crack mechanics[C]//Proceedings of the 11th Detonation Symposium. Snowmass,CO:Office of Naval Research, 1998: 717-724.
[4]Dienes J K, Middleditch J, Kershner J D, et al. Progress in statistical crack mechanics:an approach to initiation[C]//Proceddings of the 12th International Detonation Symposium. San Diego,CA:Office of Naval Research, 2002: 793-799.
[5]Browning R V. Microstructural model of mechanical initiation of energetic materials[J]. AIP Conference Proceedings,1996,370:405-408.
[6]Field J E. Hot spot ignition mechanisms for explosives[J]. Accounts of Chemical Research, 1992,25(11):489-496.
[7]Field J E, Bourne N K, Palmer S J P. Hotspot ignition mechanisms for explosives and propellants[J]. Philosophical Transactions of the Royal Society A, 1992,339:269- 283.
[8]Bowden F P, Yoffe A D. Ignitiation and growth of explosion in liquids and solids [M]. Cambridge: Cambridge University Press, 1952.
[9]Armstrong R W, Elban W L. Materials science and technology aspects of energetic (explosive) materials[J]. Materials Science and Technology, 2006,22(4):381-395.
[10]Armstrong R W. Dislocationassisted initiation of energetic materials[J]. Central European Journal of Energetic Materials, 2005,2(3):21-37.
[11]Vandersall K S, Chidester S K, Forbes J W, et al. Experimental and modeling studies of crush, puncture, and perforation scenarios in the Steven impact test[C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA:Office of Naval Research, 2002:131-139.
[12]Scammon R J, Browning R V, Middleditch J, et al. Low amplitude insult project:structural analysis and prediction of low order reaction[C]//Proceedings of the 11th International Detonation Symposium. Snowmass, CO:Office of Naval Research,1998:111-118.
[13]Dey T N, Kamm J R. Numerical modeling of shear band formation in PBX9501[C]//Proceedings of the 11th Intematonal Detonation Symposium. Snowmass, CO:Office of Naval Research,1998:725-743.
[14]Czerski H, Perry W L, Dickson P M. Solid state phase change in HMX during dropweight impact[C]//Proceedings of the 13th International Detonation Symposium.Norfolk, VA:Office of Naval Research, 2006: 681-688.
[15]-Frey R B. The initiation of explosive charges by rapid shear[C]//Proceedings of the 7th International Detonation Symposium. Annapolis,MA:Office of Naval Research, 1981:36-42.
[16]Nichols A L, Tarver C M. A statistical hot spot reactive flow model for shock initiation and detonation of solid high explosives[C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002:489-498.
[17]Idar D J, Straight J W, Osborn M A, et al. Low amplitude impact of damaged PBX 9501[J]. AIP Conference Proceedings,1999,505:655-658.
[18]Idar D J, Lucht R A, Straight J W, et al. Low amplitude insult project: PBX 9501 high explosive violent reaction experiments[C]//Proceedings of the 11th International Detonation Symposium. Snowmass,CO:Office of Naval Research, 1998: 101-110.
[19]Chidester S K, Tarver C M, Depiero A H, et al. Single and multiple impact ignition of new and aged high explosives in the steven impact test[J]. AIP Conference Proceedings, 1999,505:663-666.
[20]Chidester S K, Traver C M, Garza R. Low amplitude impact testing and analysis of pristine and aged solid high explosives[C]//Proceedings of the 11th International Detonation Symposium. Snowmass,CO:Office of Naval Research, 1998: 93-100.
[21]Field J E, Parry M A, Palmer S J P, et al. Deformation and explosive properties of HMX powders and polymer bonded explosives[C]//Morat W J. Proceedings of the 9th International Symposium. Portland,OR: Office of Naval Research, 1989: 886-896.
[22]Chidester S K, Green L G, Lee C G. A frictional work predictive method for the initiation of solid high explosives from low pressure impacts[C]//Proceedings of the 10th International Detonation Symposium. Boston,MA: Office of Naval Research, 1993: 785-792.
[23]Wortley S, Jones A, Cartwright M, et al. Low speed impact of pristine ang aged solid high explosive[C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002:399-408.
[24]Browning R V, Scammon R J. Influence of mechanical properties on nonshock ignition[C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002:149-158.
[25]Partom Y. A threshold criterion for impact ignition [C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002: 831-835.
[26]Hunt E M, Malcolm S, Pantoya M L, et al. Impact ignition of nano and micron composite energetic materials[J].International Journal of Impact Engineering, 2009,36(6):842-846.
[27]Chowdhury S. Probing the ignition mechanism of aluminum nanothermites[D]. Maryland: University of Maryland, 2012: 58-60.
[28]Mader C L, Forest C A. Two dimensional homogeneous and heterogeneous wave propagation [C]//Edwards D J.Proceedings of the 6th International Detonation Symposium. Coronado,CA:Office of Naval Research,1976:405-413.
[29]Johnson J N, Tang P K, Forest C A.Shock wave initiation of heterogeneous reactive solids[J]. Journal of Applied Physics, 1985,57(9):4323-4334.
[30]Starkenberg J. Modeling detonation propagation and failure using explosive initiation models in a conven tional hydrocode [C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002: 1001-1007.
[31]Lee E L, Tarver C M. Phenomenological model of shock initiation in heterogeneous explosives[J]. Physics of Fluids, 1980,23(12): 2362-2372.
[32]Tarver C M. Ignition and growth modeling of LX17 hockey puck experiments[J]. Propellants,Explosives, Pyrotechnics, 2005,30(2):109-117.
[33]Souers P C, Garza R, Vitello P. Ignition and growth and JWL detonation models in coarse zones[J]. Propellants, Explosives, Pyrotechnics, 2002,27(2): 62-71.
[34]Souers P C, Andreski H G,Cook Ⅲ C F,et al. LX17 cornerturning[J]. Propellants, Explosives, Pyrotechnics, 2004,29(6): 359-367.
[35]Souers P C, Andreski H G, Betteux J, et al. Dead zones in LX17 and PBX 9502[J]. Propellants,Explosives, Pyrotechnics, 2006,31(2): 89-97.
[36]Whitworth N J, Maw J R. Modelling shock desensitization of heterogeneous explosives[J]. AIP Conference Proceedings, 1996, 370: 425-428.
[37]Garcia F, Vandersall K S, Tarver C M. Shock initiation experiments with ignition and growth modeling on low density HMX[C]//18th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter Held in Conjunction with the 24th Biennial International. Conference of the International Association for the Advancement of High Pressure Science and Technology (AIRAPT). Washington: American Physical Society, 2013.
[38]Tarver C, Chidester S. Ignition and growth modeling of short pulse duration shock initiation experiments on HNS IV[C]//18th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter Held in Conjunction with the 24th Biennial International. Conference of the International Association for the Advancement of High Pressure Science and Technology(AIRAPT). Washington: American Physical Society, 2013.
[39]May C, Tarver C. Short shock pulse duration experiments plus ignition and growth modeling on composition B[C]//18th Biennial International Conference of the APS Topical Group on Shock Compression of Condensed Matter Held in Conjunction with the 24th Biennial International. Conference of the International Association for the Advancement of High Pressure Science and Technology (AIRAPT). Washington: American Physical Society, 2013.
[40]Wardell J F, Maienschein J L. The scaled thermal explosion experiment [C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA:Office of Naval Research, 2002:384-393.
[41]Forbes J W, Garcia F, Tarver C M, et al. Pressure wave measurements during thermal explosion of HMXbased high explosives [C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002:837-845.
[42]Maienschein J L, DeHaven M R, Sykora G B, et al. Thermal explosion violence for several explosives measurements and interpretations [C]//Proceedings of the 13th International Detonation Symposium. Norfolk,VA:Office of Naval Research, 2006:536-545.
[43]Maienschein J L, Chandler J B. Burn rates of pristine and degraded explosives at elevated pressures and temperatures [C]//Proceedings of the 11th International Detonation Symposium. Snowmass,CO: Office of Naval Research, 1998:872-882.
[44]Chidester S K, Tarver C M, Green L G, et al. On the violence of thermal explosion in solid explosives[J]. Combustion and Flame, 1997,110(1-2): 264-280.
[45]Yoh J J, McClelland M A. Simulating the thermal response of high explosives on time scales of days to micriseconds[J]. AIP Conforence Proceedings, 2004,706:425428.
[46]Tarver C M, Tran T D. Thermal decomposition models for HMXbased plastic bonded explosives[J]. Combustion and Flame, 2004,137(12): 50-62.
[47]Nichols III A L, Anderson A, Neely R,et al. A model for high explosives cookoff [C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA:Office of Naval Research, 2002:94-102.
[48]Tarver C M. Chemical kinetic modeling of HMX and TATB laser ignition tests[J]. Journal of Energetic Materials, 2004,22(2):93-107.
[49] Nichols III A L, Couch R, McCallen R C, et al. Modeling thermally driven energetic response of high explosives [C]//Proceedings of the 11th International Detonation Symposium. Snowmass,CO:Office of Naval Research, 1998: 862-871.
[50]Yoh J J, McClelland M A, Maienschein J L, et al. Simulating thermal explosion of octahydrotetranitrote trazine (HMX)based explosives: model comparison with experiment[J]. Journal of Applied Physics, 2006,100(7):073515.
[51]Maienschein J L, Wardell J F, DeHaven M R, et al. Deflagration of HMXbased explosives at high temperatures and pressures[J]. Propellants, Explosives, Pyrotechnics, 2004,29(5):287-295.
[52]Maienschein J L, Wardell J F, Weese R K, et al. Understanding and predicting the thermal explosion violence of HMXbased and RDXbased explosivesexperimental measurements of material properties and reaction violence [C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002:846-855.
[53]Henson B F, Smilowitz L B, Asay B W, et al. An ignition law for PBX 9501 from thermal explosion to detonation [C]//Proceedings of the 13th International Detonation Symposium. Norfolk,VA:Office of Naval Research,2006:778-785.
[54] Nichols III A L. A model for thermal cookoff and detonation of high explosives [C]//Proceedings of the 13th International Detonation Symposium. Norfolk,VA: Office of Naval Research, 2006:1151-1160.
[55]Smilowitz L, Henson B F, Romero J J, et al. The evolution of solid density within a thermal explosion. I. Proton radiography of preignition expansion, material motion, and chemical decomposition[J]. Journal of Applied Physics,2012,111(10):103515.
[56]Smilowitz L, Henson B F, Romero J J, et al. The evolution of solid density within a thermal explosion II. Dynamic proton radiography of cracking and solid consumption by burning[J]. Journal of Applied Physics,2012,111(10):103516.
[57]Campbell A W, Travis J R. The shock desensitization of PBX 9404 and Composition B3 [C]//Proceedings of the 8th International Detonation Symposium. Albu querque, NM:Office of Naval Research, 1985: 1057-1068.
[58]Meyers M A. A mechanism for dislocation generation in shockwave deformation [J]. Scripta Metallurgica, 1978,12(1): 21-26.
[59]Dick J J. Anomalous shock initiation of detonation in pentaerythritol tetranitrate crystals[J].Journal of Applied Physics, 1997,81 (2): 601-612.
[60]Dick J J. Shockwave behavior in explosive monocrystals[J]. Journal de Physique Ⅳ, 1995,5:103-106.
[61]Dreger Z A, Gruzdkov Y A, Gupta Y M, et al. Shock wave induced decomposition chemistry of pentaerythritol tetranitrate single crystals: timeresolved emission spectroscopy[J]. The Journal of Physical Chemistry B, 2002,106(2): 247-256.
[62]Hooks D E, Ramos K J. Initiation mechanisms in single crystal explosives: dislocations, elastic limits,and initiation thresholds [C]//Proceedings of the 13th International Detonation Symposium. Norfolk,VA:Office of Naval Research, 2006: 455-464.
[63]Fedorov A V, Zotov E V, Krasovsky A V, et al. Detonation front in homogenous and heterogeneous high explosives[J]. AIP Conference Proceedings, 2000,505: 801-804. [64]Fedorov A V. Detonation wave structure in liquid homogeneous,solid heterogeneous and agatized HE[C]//Proceedings of the 12th International Detonation Symposium. San Diego,CA: Office of Naval Research, 2002: 229-233.