WANG T M, HA H R, LU H L, et al. Effect of explosion network output synchronization on the damage power of shaped charge warhead of underwater weapon [J].Torpedo Technology, 2021, 29(2): 230-237.
[2]胡宏伟, 宋浦. 水中兵器爆炸威力增强技术的发展思考[J].含能材料, 2021, 29(7): 581-583.
[3]鲁忠宝, 黎勤, 哈海荣. 不同能量输出结构战斗部水下爆炸毁伤威力试验研究[J]. 水下无人系统学报, 2019, 27(1): 71-77.
LU Z B, LI Q, HA H R. Experimental study on underwater explosion damage power of warhead with different energy output configuration[J]. Journal of Unmanned Undersea Systems, 2019, 27(1): 71-77.
[4]宋浦, 肖川, 梁安定, 等. 不同起爆方式对TNT水中爆炸作用的影响[J]. 火炸药学报, 2008, 31(2): 75-77.
SONG P, XIAO C, LIANG A D, et al. Effect of different initiating modes on TNT underwater explosion[J]. Chinese Journal of Explosives & Propellants, 2008, 31(2): 75-77.
[5]李金河, 赵继波, 谭多望, 等. 不同起爆方式对含铝炸药水中爆炸近场冲击波压力的影响[J]. 高压物理学报, 2012, 26(3): 289-293.
LI J H, ZHAO J B, TAN D W, et al. Effect on the near field shock wave pressure of underwater explosion of aluminized explosive at different initiation modes[J]. Chinese Journal of High Pressure Physics, 2012, 26(3): 289-293.
[6]郭涛, 冯彬, 李裕春, 等. 不同起爆方式对水下深孔爆破危害效应影响的数值模拟[J]. 爆破器材, 2012, 41(1): 29-31.
GUO T, FENG B, LI Y C, et al. Numerical simulation of harmful effect of underwater deep-hole blasting with different ignition mode[J]. Explosive Materials, 2012, 41(1): 29-31.
[7]SWIADAK M M. Explosion effects and properties. Part Ⅱ. Explosion effects in water: NSWC/WOLTR76-116[R]. Silver Spring, MD, US: Naval Surface Weapons Center, 1978.
[8]工业炸药测试新技术:国际炸药测试方法标准化研究组织第八届会议论文集[C]. 陈正衡, 译. 北京: 煤炭工业出版社, 1982.
[9]赵琳, 李兵, 闫吉杰, 等. 炸药能量测试的水下爆炸方法[J]. 声学技术, 2003, 22(2): 72-75, 82.
ZHAO L, LI B, YAN J J, et al. A method of the blast energy measurement by underwater explosion[J]. Technical Acoustics, 2003, 22(2): 72-75, 82.