[2]蔺向阳, 郑文芳. 火药学[M]. 北京: 化学工业出版社, 2020.
[3]杨丽侠, 张邹邹, 刘来东. 发射装药热刺激下的易损性响应试验研究[J]. 火炸药学报, 2008, 31(3): 71-74.
YANG L X, ZHANG Z Z, LIU L D. Experimental study on vulnerability response of propelling charge to thermal stimuli [J]. Chinese Journal of Explosives & Propellants, 2008, 31(3):71-74.
[4]都振华, 张蕊, 同红海, 等. 超细HNS在非限制条件下的烤燃试验[J]. 火炸药学报, 2011, 34(3): 38-41, 60.
DU Z H, ZHANG R, TONG H H, et al. Cookoff test of ultrafine HNS under nonrestrictive condition [J]. Chinese Journal of Explosives & Propellants, 2011, 34(3): 38-41, 60.
[5]宋育芳, 肖乐勤, 李纯志, 等. GAP/NC基发射药的不敏感性能 [J]. 含能材料, 2023, 31(2): 152-159.
SONG Y F, XIAO L Q, LI C Z, et al. Insensitivity performance of GAP/NC-based gun propellants [J]. Chinese Journal of Energetic Materials, 2023, 31(2): 152-159.
[6]殷瑱, 闻泉, 王雨时, 等. 北约不敏感弹药标准试验方法[J]. 兵器装备工程学报, 2016, 37(10): 1-7.
YIN Z, WEN Q, WANG Y S, et al. Standard experiment method of insensitive munition in NATO [J]. Journal of Ordnance Equipment Engineering, 2016, 37(10): 1-7.
[7]张蕊, 冯长根, 陈朗. 弹药的热烤(Cook-off)实验[J]. 火工品, 2002(4): 37-39.
ZHANG R, FENG C G, CHEN L. Cook-off test of ammunition [J].Initiators & Pyrotechnics, 2002(4): 37-39.
[8]肖有才, 王瑞胜, 范晨阳, 等. 带壳JH-14C传爆药烤燃实验及响应特性数值模拟[J]. 爆炸与冲击, 2023, 43(7): 072301.
XIAO Y C, WANG R S, FAN C Y, et al. Cook-off experiment on the JH-14C booster explosive with a shell and the relevant numerical simulation [J]. Explosion and Shock Waves, 2023, 43(7): 072301.
[9]JONES D A, PARKER R P. Heat flow calculations for the small-scale cook-off bomb test: AD-A236829 [R]. US: DTIC, 1991.
[10]ZHANG K B, LI W B, ZHAO C F, et al. Study on cook-off characteristics and thermal safety venting area of RBOE charge [J]. Defence Technology, 2025, 43: 271-287.
[11]ZHU M, WANG S A, HUANG H, et al. Numerical and experimental study on the response characteristics of warhead in the fast cook-off process [J]. Defence Technology, 2021, 17(4): 1444-1452.
[12]李亮亮, 沈飞, 屈可朋, 等. 不同密封及包覆下HAE装药快速烤燃的响应特性[J]. 含能材料, 2018, 26(8): 696-700.
LI L L, SHEN F, QU K P, et al. Response characteristics of HAE charge with different sealing condition and coating layer in fast cook-off [J] . Chinese Journal of Energetic Materials, 2018, 26(8): 696-700.
[13]孙培培, 南海, 牛余雷, 等. 壳体厚度对TNT炸药快速烤燃响应的影响[J]. 含能材料, 2011, 19(4): 432-435.
SUN P P, NAN H, NIU Y L, et al. Effect of shell thickness on response level of confined TNT in fast cook-off [J]. Chinese Journal of Energetic Materials, 2011, 19(4): 532-435.
[14]徐双培, 胡双启, 王东青, 等. 壳体密封性对小尺寸弹药快速烤燃响应规律的影响[J]. 火炸药学报, 2009, 32(3): 35-37.
XU S P, HU S Q, WANG D Q, et al. Effect of shell sealing on the response of small scale ammunition in fast cook-off test [J]. Chinese Journal of Explosives & Propellants, 2009, 32(3): 35-37.
[15]程波, 李文彬, 郑宇, 等. 不同约束条件下ANPyO炸药快烤试验研究[J]. 爆破器材, 2013, 42(5): 53-56.
CHENG B, LI W B, ZHENG Y, et al. Study on ANPyO explosive in fast cook-off test under different constraint conditions [J]. Explosive Materials, 2013, 42(5): 53-56.
[16]韩冰, 张远波, 赵琼, 等. 一种新型发射装药热刺激下的易损性试验研究[J]. 火工品, 2021(4): 49-51.
HAN B, ZHANG Y B, ZHAO Q, et al. Experimental study on vulnerability response of a new propelling charge to thermal stimuli [J]. Initiators & Pyrotechnics, 2021(4): 49-51.
[17]NPFC. Hazard assessment tests for nonnuclear munition: MIL-STD-2105D [S]. Washington D C, US: NPFC, 2011.