[1]罗运军, 李生华, 李国平, 等. 新型含能材料[M]. 北京: 国防工业出版社, 2015.
LUO Y J, LI S H, LI G P, et al. Novel energetic materials [M]. Beijing: National Defence Industry Press,2015.
[2]DIPPOLD A A, KLAPOTKE T M. A study of dinitrobis-1,2,4-triazole-1,1’-diol and derivatives: design of highperformance insensitive energetic materials by the introduction of N-oxides [J]. Journal of the American Chemical Society, 2013, 135(26): 9931-9938.
[3]ZHANG J, MITCHELL L A, PARRISH D A, et al. Enforced layer-by-layer stacking of energetic salts towards high-performance insensitive energetic materials[J]. Journal of the American Chemical Society, 2015, 137(33): 10532-10535.
[4]HE C L, SHREEVE J M. Potassium 4, 5-bis(dinitromethyl)furoxanate:a green primary explosive with a positive oxygen balance [J]. Angewandte Chemie (International Edition), 2016, 55(2): 772-775.
[5]FISCHER D, KLAP-TKE T M, STIERSTORFER J. Potassium 1, 1’-dinitramino-5, 5’-bistetrazolate:a primary explosive with fast detonationand high initiation power[J]. Angewandte Chemie (International Edition), 2014, 53(31): 8172-7175.
[6]JADHAV H S, DHAVALE D D, KRISHNAMURTHY V N. Synthesis and characterization on nitrogen rich organic energetic compounds [J]. Theory and Practice of Energetic Materials, 2001, 4: 493-504.
[7]杜志明, 张英豪, 韩志跃, 等. 三唑类富氮化合物的研究进展[J]. 北京理工大学学报, 2016, 36(6): 551-557.
DU Z M, ZHANG Y H, HAN Z Y, et al. Research progress on triazole nirogen-rich compoud [J]. Transactions of Beijing Institute of Technology, 2016, 36(6): 551-557.
[8]GU H, LI C C, DAI C H, et al. Divalent nitrogen-rich cationic salts with great gas production capacities[J]. Defence Technology, 2023, 22 (4): 54-68.
[9]牛晓庆, 张建国, 王颖, 等. 叠氮唑类高氮含能化合物的理论研究[J]. 化学学报, 2011, 69(6): 610-616.
NIU X Q, ZHANG J G, WANG Y, et al. Theoretical studies of azide-azole nitrogen-rich energetic compounds[J].Acta Chimica Sinica, 2011, 69(6): 610-616.
[10]周治宇, 廖思丞, 刘天林, 等. 亚氨基桥联的富氮杂环化合物研究进展[J]. 含能材料, 2022, 30(11):1177-1186.
ZHOU Z Y, LIAO S C, LIU T L, et al. Review on imino-bridged nitrogen-rich heterocyclic compounds[J].Chinese Journal of Energetic Materials, 2022, 30(11): 1177-1186.
[11]李枫盛, 钱亚东, 尹平, 等. 偶氮桥连富氮杂环含能化合物的合成及性能研究进展[J].含能材料, 2021, 29(8): 739-758.
LI F S, QIAN Y D, YIN P, et al. Progress in the synthesis and properties of azo-bridged nitrogen-rich energetic heterocyclic compounds[J]. Chinese Journal of Energetic Materials, 2021, 29(8): 739-758.
[12]YIN P, SHREEVE J M. Advances in heterocyclic chemistry[M]. Amsterdam: Academic Press, 2017.
[13]HUYNH M H V, HISKEY M A, HARTLINE E L, et al. Polyazido high-nitrogen compounds: hydrazo and azo-1,3,5-triazine[J]. Angewandte Chemie (International Edition), 2004, 43(37): 4924-4928.
[14]张计传, 王振元, 王滨燊, 等. 富氮稠环含能化合物: 平衡能量与稳定性的新一代含能材料[J].含能材料, 2018, 26(11): 983-990.
ZHANG J C, WANG Z Y, WANG B S, et al. Fused-ring nitrogen-rich heterocycles as energetic materials: maintaining a fine balance between performance and stability[J]. Chinese Journal of Energetic Materials, 2018, 26(11): 983-990.
[15]〗张艳. 富氮唑类化合物与火药用原材料的热相容性研究[D].太原: 中北大学, 2022.
ZHANG Y. Study on thermal compatibility of nitrogenrich azole compounds with gun propellant raw materials[D].Taiyuan: North University of China, 2022.
[16]王琼, 蔚红建, 李吉祯, 等. 偶氮四唑三氨基胍盐与推进剂组份的相容性[J]. 含能材料, 2010, 18(6): 689-693.
WANG Q, WEI H J, LI J Z, et al. Compatibility of triaminoguanidinium azotetrazolate with main components of propellants [J]. Chinese Journal of Energetic Materials, 2010, 18(6): 689-693.
[17]蔡萌. 五种三嗪类含能化合物的合成、表征及性能研究[D]. 西安: 西北大学, 2021.
CAI M. Synthesis, characterization and properties of derivatives of five triazine energetic compounds [D]. Xi’an: Northwest University, 2021.
[18]王琼, 安亭, 潘清, 等.偶氮四唑胍盐的热分解机理[J]. 含能材料, 2014, 22(1): 36-42.
WANG Q, AN T, PAN Q, et al. Mechanism of thermal decomposition of guanidinium azotetrazolate [J]. Chinese Journal of Energetic Materials, 2014, 22(1): 36-42.
[19]彭克荣, 卫延安. 偶氮四唑二胍的合成与性能[J].火炸药学报, 2015, 38(4): 50-53.
PENG K R, WEI Y A. Synthesis and characteristics of guanidinium azotetrazolate [J]. Chinese Journal of Explosives & Propellants, 2015, 38(4): 50-53.
[20]何利明, 何伟, 罗运军, 等.几种钝感含能增塑剂之间的相容性[J].固体火箭技术, 2015, 38(4): 523-527.
HE L M, HE W, LUO Y J, et al. Compatibility of some insensitive energetic plasticisers with each other[J]. Journal of Solid Rocket Technology, 2015, 38(4): 523-527.
[21]中国兵器工业集团公司. 火药试验方法: GJB 770B—2005[S]. 北京: 国防科工委军标出版发行部, 2005.
China North Industries Group Co.,Ltd. The method of propellant: GJB 770B—2005 [S]. Beijing: Armament Standard Press of Commission of Science Technology and Industry for National Defence, 2005.
[22]杨钊飞, 赵凤起, 李鑫.含能材料相容性评定方法研究进展[J].四川兵工学报, 2015, 36(3): 141-146.
YANG Z F, ZHAO F Q, LI X. Research progress on methods of evaluating of energetic materials compatibility [J]. Journal of Sichuan Ordnance, 2015, 36(3): 141-146.
[23]王凯, 刘大斌, 徐森, 等.硝基胍自催化热分解特性及绝热安全性[J]. 含能材料, 2016, 24(3): 284-288.
WANG K, LIU D B, XU S, et al. Autocatalytic thermal decomposition properties and adiabatic safety of nitroguanidine[J]. Chinese Journal of Energetic Materials, 2016, 24(3): 284-288.
[24]董军, 欧江阳, 朱林, 等.端叠氮聚叠氮缩水甘油醚的热分解动力学[J].含能材料, 2016, 24(6): 555-559.
DONG J, OU J Y, ZHU L, et al. Thermal decomposition kinetic study of azidoterminated glycidiyl azidepolymer [J]. Chinese Journal of Energetic Materials, 2016, 24(6): 555-559.