[1]杨建兴①,唐瑞敏②,肖亦洁①,等.富氮含能材料TAHT、GZT与发射药基体材料的相容性[J].爆破器材,2025,54(03):1-7.[doi:10.3969/j.issn.1001-8352.2025.03.001]
 YANG Jianxing,TANG Ruimin,XIAO Yijie,et al.Compatibility of Nitrogen-Rich Energetic Materials TAHT and GZT with Matrix Materials of Propellants[J].EXPLOSIVE MATERIALS,2025,54(03):1-7.[doi:10.3969/j.issn.1001-8352.2025.03.001]
点击复制

富氮含能材料TAHT、GZT与发射药基体材料的相容性()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
54
期数:
2025年03
页码:
1-7
栏目:
基础理论
出版日期:
2025-06-04

文章信息/Info

Title:
Compatibility of Nitrogen-Rich Energetic Materials TAHT and GZT with Matrix Materials of Propellants
文章编号:
5992
作者:
杨建兴唐瑞敏肖亦洁徐抗震
①西安近代化学研究所(陕西西安, 710065)
②西北大学化工学院(陕西西安, 710069)
Author(s):
YANG Jianxing TANG Ruimin XIAO Yijie XU Kangzhen
① Xi’an Modern Chemistry Research Institute (Shaanxi Xi’an, 710065)
② School of Chemical Engineering, Northwest University (Shaanxi Xi’an, 710069)
关键词:
发射药富氮含能材料热分解性能真空安定性放气量相容性
Keywords:
propellant nitrogen-rich energetic material thermal decomposition performance vacuum stability exhaust volume compatibility
分类号:
TQ560.7; TJ510
DOI:
10.3969/j.issn.1001-8352.2025.03.001
文献标志码:
A
摘要:
为研究新型嗪类、唑类N杂环富氮含能材料在发射药中的应用前景,采用差示扫描量热法(DSC)和真空安定性试验(VST)分析了4,4′,6,6′-四(叠氮基)肼-1,3,5-三嗪(TAHT)、偶氮四唑二氨基胍盐(GZT)与发射药常规组分硝化棉(NC)、1,5-二叠氮基-3-硝基氮杂戊烷(DIANP)、丙三醇三硝酸酯(NG)、黑索今(RDX)、硝基胍(NQ)等的化学相容性。试验结果表明:TAHT与叠氮硝胺药片(DA)、双基药片(SN)、NQ或RDX的混合物中,TAHT的热分解峰温变化△Tp分别为-0.4、-0.1、-6.7、-1.4 ℃,相容性等级均为A,混合物真空安定性净增放气量R分别为0.09、 0.42、 0.47、 0.31 mL/g,相容性良好;GZT与DA、SN、RDX或NQ的混合物中,GZT的热分解峰温变化△Tp分别为8.8、-4.9、 30.8、 47.7 ℃,相容性等级分别为B、A、D、D,混合物真空安定性净增放气量R分别为0.09、 0.32、 1.30、 1.50 mL/g,与DA、SN相容,与RDX、NQ不相容。
Abstract:
In order to study the application prospect of novel azines and azoles nitrogen heterocyclic nitrogen-rich energetic materials in propellants, the chemical compatibility of 4,4′,6,6′-tetraazide hydrazine-1,3, 5-triazine (TAHT), azotetrazoldiaminoguanidine (GZT) and the conventional components of propellants, such as nitrocellulose (NC), 1,5-diazido-3-nitroazapentane (DIANP), glycerol trinitrate (NG), 1,3,5-trinitro-1,3,5-triazane (RDX), nitroguanidine (NQ), was studied by differential scanning calorimetry (DSC) method and vacuum stability test (VST) method. The experimental results show that the thermal decomposition peak temperature changes △Tp of TAHT in the mixture of TAHT and DA, SN, NQ or RDX are -0.4, -0.1, -6.7 ℃ and -1.4 ℃, respectively, and the compatibility grade is Grade A. R?of the vacuum stability of the mixtures are 0.09, 0.42, 0.47 mL/g and 0.31 mL/g, respectively, indicating good compatibility. The thermal decomposition peak temperature changes △Tp of GZT in the mixture of GZT and DA, SN, RDX or NQ are 8.8, -4.9, 30.8 ℃ and 47.7 ℃, respectively, and the compatibility levels are B, A, D and D, respectively. R?of the vacuum stability of the mixtures are 0.09, 0.32, 1.30 mL/g and 1.50 mL/g, respectively. It is compatible with DA and SN, but incompatible with RDX and NQ.

参考文献/References:

[1]罗运军, 李生华, 李国平, 等. 新型含能材料[M]. 北京: 国防工业出版社, 2015.

LUO Y J, LI S H, LI G P, et al. Novel energetic materials [M]. Beijing: National Defence Industry Press,2015.
[2]DIPPOLD A A, KLAPOTKE T M. A study of dinitrobis-1,2,4-triazole-1,1’-diol and derivatives: design of highperformance insensitive energetic materials by the introduction of N-oxides [J]. Journal of the American Chemical Society, 2013, 135(26): 9931-9938.
[3]ZHANG J, MITCHELL L A, PARRISH D A, et al. Enforced layer-by-layer stacking of energetic salts towards high-performance insensitive energetic materials[J]. Journal of the American Chemical Society, 2015, 137(33): 10532-10535.
[4]HE C L, SHREEVE J M. Potassium 4, 5-bis(dinitromethyl)furoxanate:a green primary explosive with a positive oxygen balance [J]. Angewandte Chemie (International Edition), 2016, 55(2): 772-775.
[5]FISCHER D, KLAP-TKE T M, STIERSTORFER J. Potassium 1, 1’-dinitramino-5, 5’-bistetrazolate:a primary explosive with fast detonationand high initiation power[J]. Angewandte Chemie (International Edition), 2014, 53(31): 8172-7175.
[6]JADHAV H S, DHAVALE D D, KRISHNAMURTHY V N. Synthesis and characterization on nitrogen rich organic energetic compounds [J]. Theory and Practice of Energetic Materials, 2001, 4: 493-504.
[7]杜志明, 张英豪, 韩志跃, 等. 三唑类富氮化合物的研究进展[J]. 北京理工大学学报, 2016, 36(6): 551-557.
DU Z M, ZHANG Y H, HAN Z Y, et al. Research progress on triazole nirogen-rich compoud [J]. Transactions of Beijing Institute of Technology, 2016, 36(6): 551-557.
[8]GU H, LI C C, DAI C H, et al. Divalent nitrogen-rich cationic salts with great gas production capacities[J]. Defence Technology, 2023, 22 (4): 54-68.
[9]牛晓庆, 张建国, 王颖, 等. 叠氮唑类高氮含能化合物的理论研究[J]. 化学学报, 2011, 69(6): 610-616.
NIU X Q, ZHANG J G, WANG Y, et al. Theoretical studies of azide-azole nitrogen-rich energetic compounds[J].Acta Chimica Sinica, 2011, 69(6): 610-616.
[10]周治宇, 廖思丞, 刘天林, 等. 亚氨基桥联的富氮杂环化合物研究进展[J]. 含能材料, 2022, 30(11):1177-1186.
ZHOU Z Y, LIAO S C, LIU T L, et al. Review on imino-bridged nitrogen-rich heterocyclic compounds[J].Chinese Journal of Energetic Materials, 2022, 30(11): 1177-1186.
[11]李枫盛, 钱亚东, 尹平, 等. 偶氮桥连富氮杂环含能化合物的合成及性能研究进展[J].含能材料, 2021, 29(8): 739-758.
LI F S, QIAN Y D, YIN P, et al. Progress in the synthesis and properties of azo-bridged nitrogen-rich energetic heterocyclic compounds[J]. Chinese Journal of Energetic Materials, 2021, 29(8): 739-758.
[12]YIN P, SHREEVE J M. Advances in heterocyclic chemistry[M]. Amsterdam: Academic Press, 2017.
[13]HUYNH M H V, HISKEY M A, HARTLINE E L, et al. Polyazido high-nitrogen compounds: hydrazo and azo-1,3,5-triazine[J]. Angewandte Chemie (International Edition), 2004, 43(37): 4924-4928.
[14]张计传, 王振元, 王滨燊, 等. 富氮稠环含能化合物: 平衡能量与稳定性的新一代含能材料[J].含能材料, 2018, 26(11): 983-990.
ZHANG J C, WANG Z Y, WANG B S, et al. Fused-ring nitrogen-rich heterocycles as energetic materials: maintaining a fine balance between performance and stability[J]. Chinese Journal of Energetic Materials, 2018, 26(11): 983-990.
[15]〗张艳. 富氮唑类化合物与火药用原材料的热相容性研究[D].太原: 中北大学, 2022.
ZHANG Y. Study on thermal compatibility of nitrogenrich azole compounds with gun propellant raw materials[D].Taiyuan: North University of China, 2022.
[16]王琼, 蔚红建, 李吉祯, 等. 偶氮四唑三氨基胍盐与推进剂组份的相容性[J]. 含能材料, 2010, 18(6): 689-693.
WANG Q, WEI H J, LI J Z, et al. Compatibility of triaminoguanidinium azotetrazolate with main components of propellants [J]. Chinese Journal of Energetic Materials, 2010, 18(6): 689-693.
[17]蔡萌. 五种三嗪类含能化合物的合成、表征及性能研究[D]. 西安: 西北大学, 2021.
CAI M. Synthesis, characterization and properties of derivatives of five triazine energetic compounds [D]. Xi’an: Northwest University, 2021.
[18]王琼, 安亭, 潘清, 等.偶氮四唑胍盐的热分解机理[J]. 含能材料, 2014, 22(1): 36-42.
WANG Q, AN T, PAN Q, et al. Mechanism of thermal decomposition of guanidinium azotetrazolate [J]. Chinese Journal of Energetic Materials, 2014, 22(1): 36-42.
[19]彭克荣, 卫延安. 偶氮四唑二胍的合成与性能[J].火炸药学报, 2015, 38(4): 50-53.
PENG K R, WEI Y A. Synthesis and characteristics of guanidinium azotetrazolate [J]. Chinese Journal of Explosives & Propellants, 2015, 38(4): 50-53.
[20]何利明, 何伟, 罗运军, 等.几种钝感含能增塑剂之间的相容性[J].固体火箭技术, 2015, 38(4): 523-527.
HE L M, HE W, LUO Y J, et al. Compatibility of some insensitive energetic plasticisers with each other[J]. Journal of Solid Rocket Technology, 2015, 38(4): 523-527.
[21]中国兵器工业集团公司. 火药试验方法: GJB 770B—2005[S]. 北京: 国防科工委军标出版发行部, 2005.
China North Industries Group Co.,Ltd. The method of propellant: GJB 770B—2005 [S]. Beijing: Armament Standard Press of Commission of Science Technology and Industry for National Defence, 2005.
[22]杨钊飞, 赵凤起, 李鑫.含能材料相容性评定方法研究进展[J].四川兵工学报, 2015, 36(3): 141-146.
YANG Z F, ZHAO F Q, LI X. Research progress on methods of evaluating of energetic materials compatibility [J]. Journal of Sichuan Ordnance, 2015, 36(3): 141-146.
[23]王凯, 刘大斌, 徐森, 等.硝基胍自催化热分解特性及绝热安全性[J]. 含能材料, 2016, 24(3): 284-288.
WANG K, LIU D B, XU S, et al. Autocatalytic thermal decomposition properties and adiabatic safety of nitroguanidine[J]. Chinese Journal of Energetic Materials, 2016, 24(3): 284-288.
[24]董军, 欧江阳, 朱林, 等.端叠氮聚叠氮缩水甘油醚的热分解动力学[J].含能材料, 2016, 24(6): 555-559.
DONG J, OU J Y, ZHU L, et al. Thermal decomposition kinetic study of azidoterminated glycidiyl azidepolymer [J]. Chinese Journal of Energetic Materials, 2016, 24(6): 555-559.

相似文献/References:

[1]黄亚峰,王晓峰,王红星,等.火炸药双螺杆挤出工艺的研究现状与发展[J].爆破器材,2013,42(04):41.[doi:10.3969/j.issn.1001-8352.2013.04.010]
 HUANG Yafeng,WANG Xiaofeng,WANG Hongxing,et al.Research Status and Development of the Twin Screw Extrusion Technology on the propellants and explosives[J].EXPLOSIVE MATERIALS,2013,42(03):41.[doi:10.3969/j.issn.1001-8352.2013.04.010]
[2]陈永康①②,陈明华②,张力①,等.用快速筛选仪研究发射药的热分解[J].爆破器材,2014,43(03):48.[doi:10.3969/j.issn.1001-8352.2014.03.011]
 CHEN Yongkang,CHEN Minghua,ZHANG Li,et al.Study on the Thermal Decomposition of Propellant Using Rapid Screening Device[J].EXPLOSIVE MATERIALS,2014,43(03):48.[doi:10.3969/j.issn.1001-8352.2014.03.011]
[3]刘强,张玉成,张江波,等.底喷式等离子体发生器的输出特性研究[J].爆破器材,2015,44(04):11.[doi:10.3969/j.issn.1001-8352.2015.04.003]
 LIU Qiang,ZHANG Yucheng,ZHANG Jiangbo,et al.Output Characteristics of the Bottomjet Plasma Generator[J].EXPLOSIVE MATERIALS,2015,44(03):11.[doi:10.3969/j.issn.1001-8352.2015.04.003]
[4]崔晓萍①,马永忠①,杨建②.某型枪射催泪弹的可靠性研究[J].爆破器材,2018,47(02):48.[doi:10.3969/j.issn.1001-8352.2018.02.010]
 CUI Xiaoping,MA Yongzhong,YANG Jian.Study on the Reliability of a Gun Firing Tear Gas Grenade[J].EXPLOSIVE MATERIALS,2018,47(03):48.[doi:10.3969/j.issn.1001-8352.2018.02.010]
[5]陈言坤,马士洲,汪海涛,等.基于燃气生成速率比的发射药破碎程度定量表征方法[J].爆破器材,2019,48(02):15.[doi:10.3969/j.issn.1001-8352.2019.02.003]
 CHEN Yankun,MA Shizhou,WANG Haitao,et al.Quantitative Characterization Method for Fragmentation Degree of Propellant Based on Ratio of Gas Generation Rates[J].EXPLOSIVE MATERIALS,2019,48(03):15.[doi:10.3969/j.issn.1001-8352.2019.02.003]
[6]解德富①,黄振亚①,张成①,等.高燃速功能材料对高能发射药性能的影响[J].爆破器材,2020,49(06):27.[doi:10.3969/j.issn.1001-8352.2020.06.005]
 XIE Defu,HUANG Zhenya,ZHANG Cheng,et al.Influence of High Burning Rate Functional Materials on Properties of High Energy Gun Propellant[J].EXPLOSIVE MATERIALS,2020,49(03):27.[doi:10.3969/j.issn.1001-8352.2020.06.005]
[7]张邹邹,何昌辉,张衡,等.NC体系发射药烤燃点火的响应特性[J].爆破器材,2021,50(01):38.[doi:10.3969/j.issn.1001-8352.2021.01.007]
 ZHANG Zouzou,HE Changhui,ZHANG Heng,et al.Ignition Response Characteristics of NC Propellants under Cook-off Test[J].EXPLOSIVE MATERIALS,2021,50(03):38.[doi:10.3969/j.issn.1001-8352.2021.01.007]
[8]胡敏恩①,李芳②,宋立骞①,等.典型湿度条件下某双基发射药的安全储存寿命预估[J].爆破器材,2021,50(03):55.[doi:10.3969/j.issn.1001-8352.2021.03.011]
 HU Minen,LI Fang,SONG Liqian,et al.Safety Storage Life Estimation of a Double Base Propellant under Typical Humidity[J].EXPLOSIVE MATERIALS,2021,50(03):55.[doi:10.3969/j.issn.1001-8352.2021.03.011]
[9]韩冰,魏伦,于慧芳,等.CD-3发射装药低易损性能试验研究[J].爆破器材,2022,51(02):26.[doi:10.3969/j.issn.1001-8352.2022.02.004]
 HAN Bing,WEI Lun,YU Huifang,et al.Experimental Study on Low Vulnerability of CD-3 Propellant Charge[J].EXPLOSIVE MATERIALS,2022,51(03):26.[doi:10.3969/j.issn.1001-8352.2022.02.004]
[10]马健行①,王彦君②,陈华东②,等.典型换能元与点火药剂匹配试验研究[J].爆破器材,2022,51(05):31.[doi:10.3969/j.issn.1001-8352.2022.05.006]
 MA Jianxing,WANG Yanjun,CHEN Huadong,et al.Matching Experimental Study on Typical Energy Exchange Elements and Ignition Agents[J].EXPLOSIVE MATERIALS,2022,51(03):31.[doi:10.3969/j.issn.1001-8352.2022.05.006]

备注/Memo

备注/Memo:
收稿日期:2024-10-11
第一作者:杨建兴(1978—),男,研究员,主要从事发射药配方设计与工艺性能研究。E-mail: stonexing0803@163.com
更新日期/Last Update: 2025-06-03