[1]程家彭,陈清,李斌,等.阻隔防爆材料对氢气爆炸特性的影响[J].爆破器材,2025,54(03):18-26.[doi:10.3969/j.issn.1001-8352.2025.03.004]
 CHENG Jiapeng,CHEN Qing,LI Bin,et al.Effect of Explosion-Proof Materials on the Explosion Characteristics of Hydrogen[J].EXPLOSIVE MATERIALS,2025,54(03):18-26.[doi:10.3969/j.issn.1001-8352.2025.03.004]
点击复制

阻隔防爆材料对氢气爆炸特性的影响()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
54
期数:
2025年03
页码:
18-26
栏目:
基础理论
出版日期:
2025-06-04

文章信息/Info

Title:
Effect of Explosion-Proof Materials on the Explosion Characteristics of Hydrogen
文章编号:
5956
作者:
程家彭陈清李斌王永旭张丹解立峰
南京理工大学安全科学与工程学院(江苏南京,210094)
Author(s):
CHENG Jiapeng CHEN Qing LI Bin WANG Yongxu ZHANG Dan XIE Lifeng
School of Safety Science and Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
氢气阻隔防爆材料初始压力5 L圆柱形爆炸容器爆炸压力
Keywords:
hydrogen explosionproof material initial pressure 5 L cylindrical explosion container explosion pressure
分类号:
X932;TQ116.2
DOI:
10.3969/j.issn.1001-8352.2025.03.004
文献标志码:
A
摘要:
搭建5 L圆柱形爆炸实验平台,在不同初始压力p0下,进行了球形非金属材料(SNM)、铝合金拉网材料(MAA)和聚氨酯多孔材料(PU)3种阻隔防爆材料对氢气爆炸压力影响的实验。结果表明,实验数据和拟合曲线整体呈现出倒U型,最大爆炸压力pmax均在氢气体积分数φ=40%时达到最大,填充阻隔防爆材料对容器底部湍流的影响更显著,底部所测pmax要大于侧壁和顶部。此外,3种材料对氢气/空气预混气爆炸都具有双重作用。当φ<20%时,对氢气均表现出抑制效果,抑制作用随p0的增大而减弱。由于冷壁效应和器壁效应,具有较大比表面积的PU抑制效果最佳,最小pmax为47 kPa,比空白组降低83.6%。当φ≥20%时,3种材料均促进氢气爆炸,促进效果随p0的增大而增强。由于材料的孔径和压缩程度均会影响容器内的湍流程度,3种材料对不同p0pmax的增幅不同,pmax最大可增大为空白组的7.5~9.5倍。
Abstract:
A 5 L cylindrical explosion test platform was constructed to conduct experiments on the effects of three types of explosion-proof materials, namely spherical non-metallic material (SNM), aluminum alloy stretched mesh material (MAA), and polyurethane porous material (PU), on hydrogen explosion pressure under different initial pressures p0. The results indicate that the experimental data and fitting curves for the material group as a whole show an inverted U-shape. The maximum explosion pressures pmax all reach their maximum values when the hydrogen volume fraction φ=40%. The effect of the filled explosion-proof materials on the turbulence at the bottom of the vessel is more significant, resulting in a higher measured pmax?at the bottom than that at the side walls and top. In addition, all the three materials have a dual effect on the hydrogen-air premix explosion. When φ<20%, there is an inhibitory effect on hydrogen, and the inhibitory effect decreases with the increase of p0. Due to the cold-wall effect and the vessel-wall effect, PU with larger specific surface area has the best inhibition effect, with a minimum pmax?of 47 kPa, which is 83.6% lower than that of the control group. When φ≥ 20%, the three materials all promote hydrogen explosion, and the promotion effect is more obvious with the increase of p0. Both the pore size and the degree of compression of the materials affect the degree of turbulence in the vessel, resulting in different increases of pmax?at different p0 for the three materials. The porous material has the maximum increase of pmax?by 7.5-9.5 times.

参考文献/References:

[1]HASSAN Q, SAMEEN A Z, SALMAN H M, et al. Hydrogen energy future: advancements in storage technologies and implications for sustainability [J]. Journal of Energy Storage, 2023, 72: 108404.

[2]SARKAR A, BANERJEE R. Net energy analysis of hydrogen storage options [J]. International Journal of Hydrogen Energy, 2005, 30(8): 867-877.
[3]路长, 李毅, 潘荣锟. 管道氢气空气预混气体爆炸特征的试验研究[J]. 安全与环境学报, 2016, 16(3): 38-42.
LU C, LI Y, PAN R K. Experimental study on explosion tendency of hydrogen-air premixed gases in the duct [J]. Journal of Safety and Environment, 2016, 16(3): 38-42.
[4]WEN X P, WANG M M, SU T F, et al. Suppression effects of ultrafine water mist on hydrogen/methane mixture explosion in an obstructed chamber [J]. International Journal of Hydrogen Energy, 2019, 44(60): 32332-32342.
[5]SHI L, MENG X B, WU Y, et al. Numerical simulation study of the mechanism of hydrogen explosion inhibition by fine water mist containing NaOH [J]. Powder Technology, 2024, 432: 119166.
[6]HOLBORN P G, BATTERSBY P N, INGRAM J M, et al. Modelling the mitigation of a hydrogen deflagration in a nuclear waste silo ullage with water fog [J]. Process Safety and Environmental Protection, 2013, 91(6): 476-482.
[7]XIA Y C, ZHANG J N, ZHANG B, et al. Localized water mist method enabling superior premixed hydrogen-methane-air deflagration mitigation in semi-confined space [J]. International Journal of Hydrogen Energy, 2024, 50: 1458-1469.
[8]WEI S M, YU M G, PEI B, et al. Experimental and numerical study on the explosion suppression of hydrogen/dimethyl ether/methane/air mixtures by water mist containing NaHCO3 [J]. Fuel, 2022, 328: 125235.
[9]LI Y C, BI M S, HUANG L, et al. Hydrogen cloud explosion evaluation under inert gas atmosphere [J]. Fuel Processing Technology, 2018, 180: 96-104.
[10]XU J T, CHEN X F, JIANG H P, et al. Coupling effects of venting and inerting on hydrogen-air explosions at elevated static activation pressures [J]. International Journal of Hydrogen Energy, 2024, 56: 207-218.
[11]MITU M, STOLZ T, ZAKEL S. The influence of inert gas on limiting experimental safe gap of fuel-air mixtures at various initial pressures [J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105094.
[12]DIXON-LEWIS G, MARSHALL P, RUSCIC B, et al. Inhibition of hydrogen oxidation by HBr and Br2 [J]. Combustion and Flame, 2012, 159(2): 528-540.
[13]NAN F, LUO Z M, CHENG F M, et al. Research progress and development trends of hydrogen explosion suppression materials and mechanisms [J]. Process Safety and Environmental Protection, 2024, 184: 1318-1331.
[14]SONG X Z, ZUO X C, YANG Z K, et al. The explosionsuppression performance of mesh aluminum alloys and spherical nonmetallic materials on hydrogen-air mixtures [J]. International Journal of Hydrogen Energy, 2020, 45(56): 32686-32701.
[15]ZHUANG W, BI Y F, LIU B J, et al. Mechanical properties of polyurethane mixture and load response behaviour of polyurethane composite pavement [J]. Polymers, 2023, 15(2): 417.
[16]LI C H, ZHANG G Y, YUAN B H. Exceptional performance of flame-retardant polyurethane foam: the suppression effect on explosion pressure and flame propagation of methane-air premixed gas [J]. Materials, 2023, 16(24): 7602.
[17]ZALOSH R. Deflagration suppression using expanded metal mesh and polymer foams [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 659-663.
[18]宋先钊, 解立峰, 李斌, 等. 甲烷气氛条件下网状铝合金材料阻隔防爆性能研究[J]. 消防科学与技术, 2018, 37(11): 1494-1497.
SONG X Z, XIE L F, LI B, et al. Study on the barrier explosionproof performance of mesh aluminum alloy under methane atmosphere [J]. Fire Science and Technology, 2018, 37(11): 1494-1497.
[19]YANG Z K, ZHAO K, SONG X Z, et al. Effects of mesh aluminium alloys and propane addition on the explosion-suppression characteristics of hydrogen-air mixture[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34998-35013.
[20]CHEN Q, LI B, WANG Y X, et al. Effect of polyurethane foam and carbon dioxide on the suppression of hydrogen/air explosion [J]. International Journal of Hydrogen Energy, 2024, 63: 538-546.
[21]中华人民共和国应急管理部. 加油(气)站油(气)储存罐体阻隔防爆技术要求: AQ/T 3001—2021[S]. 2021.
Ministry of Emergency Management of the People’s Republic of China. Specifications of separate and explosion-proof techniques for oil (gas) storage tanks in petrol (gas) stations: AQ/T 3001—2021 [S]. 2021.
[22]中华人民共和国应急管理部. 阻隔防爆橇装式加油(气)装置技术要求: AQ/T 3002—2021 [S]. 2021.
Ministry of Emergency Management of the People’s Republic of China. Separate and explosion-proof technical specification of portable fuel (gas) device: AQ/T 3002—2021[S]. 2021.
[23]田宏, 王旭, 高永庭. 多孔填充材料的防火防爆机理及应用[J]. 工业安全与防尘, 2000(4): 43-46.
TIAN H, WANG X, GAO Y T. Mechanism of fire protection and explosion suppression of porous materials and application [J]. Industrial Safety and Dust Control, 2000(4): 43-46.
[24]CHEN S N. Application of inherent safety explosion-proof technology in oil storage & transportation device [J]. Procedia Engineering, 2011, 15: 4814-4818.

备注/Memo

备注/Memo:
收稿日期:2024-06-06
基金项目:江苏省科研创新计划(KYCX24_0624)
第一作者:程家彭(1999—),男,硕士,主要从事气体爆炸方面的研究。E-mail: xuede@njust.edu.cn
通信作者:李斌(1984—),男,博士,副研究员,主要从事多相爆轰相关研究。E-mail: libin@njust.edu.cn
更新日期/Last Update: 2025-06-03