[1]HASSAN Q, SAMEEN A Z, SALMAN H M, et al. Hydrogen energy future: advancements in storage technologies and implications for sustainability [J]. Journal of Energy Storage, 2023, 72: 108404.[2]SARKAR A, BANERJEE R. Net energy analysis of hydrogen storage options [J]. International Journal of Hydrogen Energy, 2005, 30(8): 867-877.
[3]路长, 李毅, 潘荣锟. 管道氢气空气预混气体爆炸特征的试验研究[J]. 安全与环境学报, 2016, 16(3): 38-42.
LU C, LI Y, PAN R K. Experimental study on explosion tendency of hydrogen-air premixed gases in the duct [J]. Journal of Safety and Environment, 2016, 16(3): 38-42.
[4]WEN X P, WANG M M, SU T F, et al. Suppression effects of ultrafine water mist on hydrogen/methane mixture explosion in an obstructed chamber [J]. International Journal of Hydrogen Energy, 2019, 44(60): 32332-32342.
[5]SHI L, MENG X B, WU Y, et al. Numerical simulation study of the mechanism of hydrogen explosion inhibition by fine water mist containing NaOH [J]. Powder Technology, 2024, 432: 119166.
[6]HOLBORN P G, BATTERSBY P N, INGRAM J M, et al. Modelling the mitigation of a hydrogen deflagration in a nuclear waste silo ullage with water fog [J]. Process Safety and Environmental Protection, 2013, 91(6): 476-482.
[7]XIA Y C, ZHANG J N, ZHANG B, et al. Localized water mist method enabling superior premixed hydrogen-methane-air deflagration mitigation in semi-confined space [J]. International Journal of Hydrogen Energy, 2024, 50: 1458-1469.
[8]WEI S M, YU M G, PEI B, et al. Experimental and numerical study on the explosion suppression of hydrogen/dimethyl ether/methane/air mixtures by water mist containing NaHCO3 [J]. Fuel, 2022, 328: 125235.
[9]LI Y C, BI M S, HUANG L, et al. Hydrogen cloud explosion evaluation under inert gas atmosphere [J]. Fuel Processing Technology, 2018, 180: 96-104.
[10]XU J T, CHEN X F, JIANG H P, et al. Coupling effects of venting and inerting on hydrogen-air explosions at elevated static activation pressures [J]. International Journal of Hydrogen Energy, 2024, 56: 207-218.
[11]MITU M, STOLZ T, ZAKEL S. The influence of inert gas on limiting experimental safe gap of fuel-air mixtures at various initial pressures [J]. Journal of Loss Prevention in the Process Industries, 2023, 83: 105094.
[12]DIXON-LEWIS G, MARSHALL P, RUSCIC B, et al. Inhibition of hydrogen oxidation by HBr and Br2 [J]. Combustion and Flame, 2012, 159(2): 528-540.
[13]NAN F, LUO Z M, CHENG F M, et al. Research progress and development trends of hydrogen explosion suppression materials and mechanisms [J]. Process Safety and Environmental Protection, 2024, 184: 1318-1331.
[14]SONG X Z, ZUO X C, YANG Z K, et al. The explosionsuppression performance of mesh aluminum alloys and spherical nonmetallic materials on hydrogen-air mixtures [J]. International Journal of Hydrogen Energy, 2020, 45(56): 32686-32701.
[15]ZHUANG W, BI Y F, LIU B J, et al. Mechanical properties of polyurethane mixture and load response behaviour of polyurethane composite pavement [J]. Polymers, 2023, 15(2): 417.
[16]LI C H, ZHANG G Y, YUAN B H. Exceptional performance of flame-retardant polyurethane foam: the suppression effect on explosion pressure and flame propagation of methane-air premixed gas [J]. Materials, 2023, 16(24): 7602.
[17]ZALOSH R. Deflagration suppression using expanded metal mesh and polymer foams [J]. Journal of Loss Prevention in the Process Industries, 2007, 20(4/5/6): 659-663.
[18]宋先钊, 解立峰, 李斌, 等. 甲烷气氛条件下网状铝合金材料阻隔防爆性能研究[J]. 消防科学与技术, 2018, 37(11): 1494-1497.
SONG X Z, XIE L F, LI B, et al. Study on the barrier explosionproof performance of mesh aluminum alloy under methane atmosphere [J]. Fire Science and Technology, 2018, 37(11): 1494-1497.
[19]YANG Z K, ZHAO K, SONG X Z, et al. Effects of mesh aluminium alloys and propane addition on the explosion-suppression characteristics of hydrogen-air mixture[J]. International Journal of Hydrogen Energy, 2021, 46(70): 34998-35013.
[20]CHEN Q, LI B, WANG Y X, et al. Effect of polyurethane foam and carbon dioxide on the suppression of hydrogen/air explosion [J]. International Journal of Hydrogen Energy, 2024, 63: 538-546.
[21]中华人民共和国应急管理部. 加油(气)站油(气)储存罐体阻隔防爆技术要求: AQ/T 3001—2021[S]. 2021.
Ministry of Emergency Management of the People’s Republic of China. Specifications of separate and explosion-proof techniques for oil (gas) storage tanks in petrol (gas) stations: AQ/T 3001—2021 [S]. 2021.
[22]中华人民共和国应急管理部. 阻隔防爆橇装式加油(气)装置技术要求: AQ/T 3002—2021 [S]. 2021.
Ministry of Emergency Management of the People’s Republic of China. Separate and explosion-proof technical specification of portable fuel (gas) device: AQ/T 3002—2021[S]. 2021.
[23]田宏, 王旭, 高永庭. 多孔填充材料的防火防爆机理及应用[J]. 工业安全与防尘, 2000(4): 43-46.
TIAN H, WANG X, GAO Y T. Mechanism of fire protection and explosion suppression of porous materials and application [J]. Industrial Safety and Dust Control, 2000(4): 43-46.
[24]CHEN S N. Application of inherent safety explosion-proof technology in oil storage & transportation device [J]. Procedia Engineering, 2011, 15: 4814-4818.