[1]郏杭生①,崔立宝①,丁亚军①,等.含CL-20的微孔发射药的设计及性能研究[J].爆破器材,2024,53(04):37-44.[doi:10.3969/j.issn.1001-8352.2024.04.006]
 JIA Hangsheng,CUI Libao,DING Yajun,et al.Design and Performance Study on Microporous Gun Propellant Containing CL-20[J].EXPLOSIVE MATERIALS,2024,53(04):37-44.[doi:10.3969/j.issn.1001-8352.2024.04.006]
点击复制

含CL-20的微孔发射药的设计及性能研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年04
页码:
37-44
栏目:
爆炸材料
出版日期:
2024-07-18

文章信息/Info

Title:
Design and Performance Study on Microporous Gun Propellant Containing CL-20
文章编号:
5916
作者:
郏杭生崔立宝丁亚军李成龙顾晗王晓倩
①南京理工大学化学与化工学院(江苏南京,210094)
②驻太原地区防化军代室(山西太原,030000)
Author(s):
JIA Hangsheng CUI Libao DING Yajun LI Chenglong GU Han WANG Xiaoqian
①School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②Military Representative Office in Taiyuan District (Shanxi Taiyuan, 030000)
关键词:
微孔发泡超临界流体发射药CL-20燃烧感度力学性能
Keywords:
microporous foaming supercritical fluid gun propellant CL-20 combustion sensitivity mechanical property
分类号:
TQ562
DOI:
10.3969/j.issn.1001-8352.2024.04.006
文献标志码:
A
摘要:
为了研究六硝基六氮杂异伍兹烷(CL-20)含量及微孔结构对发射药性能的影响,采用超临界发泡工艺设计并制备了含CL-20的微孔发射药。利用扫描电子显微镜(SEM)观察了发射药的形貌结构,通过密闭爆发器实验、简支梁冲击仪和摩擦感度仪等研究了发射药的燃烧性能、力学性能和感度。结果表明:CL-20颗粒均匀地分散在样品表面及内部,样品内部形成了大量尺寸为0.08~2.00 μm的泡孔;CL-20颗粒的加入降低了样品的力学性能,CL-20含量越高,样品的抗冲击强度与拉伸强度降低得越明显;随着CL-20含量的增加,样品的摩擦感度和静电感度会随之升高,燃速也会得到一定程度的提高;经发泡改性后的样品的力学性能弱于未经发泡改性的样品;发泡工艺能够抑制因CL-20含量上升而导致的感度上升;经过发泡后的样品,燃烧性能得到了显著提升,样品的L-B(相对动态活度-相对压力)曲线在B为0~0.10范围内即出现急速上升趋势,L在B为0.14~0.18范围内达到最大,CL-20质量分数为15%和20%时,Lmax分别为14.39 MPa-1·s-1和9.70 MPa-1·s-1
Abstract:
In order to study the influence of hexanitrohexaazaisowurtzitane (CL-20) content and microporous structure on the performance of gun propellant, a supercritical foaming process was used to design and prepare microporous gun propellants containing CL-20. Morphology and structure of the gun propellant were observed using scanning electron microscopy (SEM). Combustion performance, mechanical properties, and sensitivity were studied by closed bomb tests, simply supported beam impact tests, and friction sensitivity tests, respectively. The results show that CL-20 particles uniformly disperse on the surface and interior of the sample, and a large number of bubbles with sizes ranging from 0.08 to 2.00 μm were formed inside the sample. The addition of CL-20 particles reduces mechanical properties of the samples. The higher the content of CL-20, the more significant the decrease in the impact strength and tensile strength of the sample. With the increase of CL-20 content, friction sensitivity and electrostatic sensitivity of the sample will also increase, and burning rate will be improved to a certain extent. Mechanical properties of the sample after foaming modification are weaker than those of the sample without foaming modification. Foaming process can suppress the increase in sensitivity caused by the increase in CL-20 content. After foaming, combustion performance of the sample is significantly improved. L-B (relative dynamic vivacity-relative pressure) curves of the sample show a rapid upward trend in the range of B?from 0 to 0.10. And it reaches the maximum in the range of B?from 0.14 to 0.18. When the mass fraction of CL-20 is 15% and 20%, Lmax is 14.39 MPa-1·s-1?and 9.70 MPa-1·s-1, respectively.

参考文献/References:

[1]CHENG T. Review of novel energetic polymers and binders-high energy propellant ingredients for the new space race [J].Designed Monomers and Polymers, 2019, 22(1): 54-65.
[2]肖忠良. 火炸药导论[M]. 北京: 国防工业出版社, 2020.
[3]SANGHAVI R R, KAMALE P J, SHAIKH M A R, et al. HMX based enhanced energy LOVA gun propellant [J]. Journal of Hazardous Materials, 2007, 143(1/2): 532-534.
[4]LIANG T X, ZHANG Y K, MA Z L, et al. Energy characteristics and mechanical properties of cyclotrimethylenetrinitramine (RDX)-based insensitive high-energy propellant [J]. Journal of Materials Research and Technology, 2020, 9(6): 15313-15323.
[5]CHEN L, LI Q , ZHAO L Y, et al. Enhancement strategy of mechanical property by constructing of energetic RDX@CNFs composites in propellants, and investigation on its combustion and sensitivity behavior [J]. Combustion and Flame, 2022, 244: 112249.
[6]豆松松, 曹永杰, 张明安, 等. RDX粒度对某高能硝胺发射药燃烧性能的影响[J]. 装备环境工程, 2022, 19(3): 52-57.
DOU S S, CAO Y J, ZHANG M A, et al. RDX particle size on combustion performance of a high-energy nitramine propellant [J]. Equipment Environmental Engineering, 2022, 19(3): 52-57.
[7]BOLTON O, SIMKE L R, PAGORIA P F, et al. High power explosive with good sensitivity: a 2∶1 cocrystal of CL-20∶HMX [J]. Crystal Growth & Design, 2012, 12(9): 4311-4314.
[8]URBELIS J H, YOUNG V G, SWIFT J A. Using solvent effects to guide the design of a CL-20 cocrystal [J]. CrystEngComm, 2015(7): 1564-1568.
[9]解德富, 黄振亚, 宋亚苹, 等. 乙二胺-三乙烯二胺高氯酸盐对高能发射药热分解反应的影响[J]. 火炸药学报, 2020, 43(2): 208-212.
XIE D F, HUANG Z Y, SONG Y P, et al. Effect of ethylenediamine triethylenediamine perchlorate on thermal decomposition reaction of high-energy gun propellant [J]. Chinese Journal of Explosives & Propellants, 2020, 43(2): 208-212.
[10]LI M M, HU R, XU M H, et al. Burning characteristics of high density foamed GAP/CL-20 propellants [J]. Defence Technology, 2022, 18(10): 1914-1921.
[11]应三九, 徐复铭. 发射药超临界发泡微孔制备技术研究[J]. 兵工学报, 2013, 34(8): 1028-1036.
YING S J, XU F M. Research on supercritical fluid foaming technology for preparation of microcellular foamed propellants [J]. Acta Armamentarii, 2013, 34(8): 1028-1036.
[12]COLTON J S, SUH N P. The nucleation of microcellular thermoplastic foam with additives: Part I: theoretical considerations [J]. Polymer Engineering and Science, 1987, 27(7): 485-492.
[13]COLTON J S,SUH N P.The nucleation of microcellular thermoplastic foam with additives: Part II: experimental results and discussion [J]. Polymer Engineering and Science, 1987, 27(7): 493-499.
[14]薛奡炜. 超临界流体在结构微孔发射药中的制备及应用研究[D]. 南京: 南京理工大学, 2012.
XUE A W. Study on the preparation and application of the supercritical fluid technology in the manufacturing of the structural micro-foam propellants [D]. Nanjing: Nanjing University of Science and Technology, 2012.
[15]张一鸣, 丁亚军, 罗元香, 等. 分层结构微孔球扁药制备条件对其燃烧性能的影响[J]. 含能材料, 2017, 25(3): 248-252.
ZHANG Y M, DING Y J, LUO Y X, et al. Effects of preparation conditions on combustion performance of microcellular oblate spherical propellants with layered structure [J]. Chinese Journal of Energetic Materials, 2017, 25(3): 248-252.
[16]DING Y J, YING S J, XIAO Z L, et al. Cell structure of microcellular combustible object foamed by supercritical carbon dioxide [J]. Defence Technology, 2019, 15(3): 419-425.
[17]刘慧娜, 应三九,丁亚军, 等. 碳纤维增强微孔可燃壳体的制备及性能研究[J]. 火炸药学报, 2021, 44(1): 96-100.
LIU H N, YING S J, DING Y J, et al. Preparation and performance of carbon fiber reinforced microcellular combustible cartridge cases [J]. Chinese Journal of Explosives & Propellants, 2021, 44(1): 96-100.
[18]张硕,丁亚军, 应三九. 微孔NC/TEGN/RDX复合材料的制备及力学性能[J]. 含能材料, 2019, 27(3): 210-215.
ZHANG S, DING Y J, YING S J. Fabrication and mechanical properties of micro-porous NC/TEGN/RDX composites [J]. Chinese Journal of Energetic Materials, 2019, 27(3): 210-215.
[19]YANG W T, LI Y X, YING S J. Fabrication, thermoanalysis, and performance evaluation studies on RDXbased microcellular combustible objects [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(4): 568-573.
[20]LI Y X, YANG W T, YING S J. Investigation on the foaming behaviors of NC-based gun propellants [J]. Defence Technology, 2014, 10(3): 261-268.
[21]YANG W T, LI Y X, YING S J. An investigation of the preparation and performance of microcellular combustible material [J].Central European Journal of Energetic Materials, 2014, 11(2): 257-269.
[22]李应林, 向帮龙, 蒋亚静, 等. 微孔发泡成核理论新进展[J]. 现代塑料加工应用, 2006, 18(6): 59-61.
LI Y L, XIANG B L, JIANG Y J, et al. New nucleation theory progress in microcellular foaming [J]. Modern Plastics Processing and Applications, 2006,18(6): 59-61.
[23]张邹邹, 周敬, 杨丽侠, 等. 温度对粒状发射药动态力学性能的影响[J]. 火炸药学报, 2015, 38(2): 86-88.
ZHANG Z Z, ZHOU J, YANG L X, et al. Effects of temperature on the dynamic mechanical properties of granular gun propellant [J]. Chinese Journal of Explosives & Propellants, 2015, 38(2): 86-88.

备注/Memo

备注/Memo:
收稿日期:2023-12-26
第一作者:郏杭生(1998—),男,硕士研究生,主要从事含能材料的研究。E-mail:2216189400@qq.com
通信作者:李成龙(1990—),男,博士,主要从事含能材料的研究。E-mail:lclzzz@126.com
更新日期/Last Update: 2024-07-16