[1]黄亨建, 路中华, 刘晓波, 等. 欧美钝感弹药技术发展现状与趋势[J]. 含能材料, 2017, 25(8): 618-621.
[2]黄辉, 黄亨建. 不敏感PBX炸药的多尺度结构与感度[J]. 中国材料进展, 2022, 41(2): 108-116.
HUANG H, HUANG H J. Multi-scale structures and sensitivity of insensitive polymer bounded explosives [J]. Materials China, 2022, 41(2): 108-116.
[3]HAMSHERE B L, LOCHERT I J, DEXTER R M. Evaluation of PBXN-109: the explosive fill for the penguin anti-ship missile warhead: DSTOTR1471[R].Edinburgh South Australia, Australia: DSTO Systems Sciences Laboratory, 2003.
[4]邓海, 李刚, 郭洪卫, 等. 不敏感弹药技术的发展现状与趋势[J]. 兵器装备工程学报, 2022, 43(2): 137-144.
DENG H, LI G, GUO H W, et al. Development status and trend of insensitive ammunition technology [J]. Journal of Ordnance Equipment Engineering, 2022, 43(2): 137-144.
[5]马晗晔, 王雨时, 王光宇. 国外不敏感炸药综述[J]. 兵器装备工程学报, 2020, 41(5): 166-174.
MA H Y, WANG Y S, WANG G Y. Summary of foreign insensitive explosives [J]. Journal of Ordnance Equipment Engineering, 2020, 41(5): 166-174.
[6]叶青, 余永刚. 含能材料热安全性研究进展[J]. 装备环境工程, 2022, 19(3): 1-10.
YE Q, YU Y G. Thermal safety of energetic materials [J]. Equipment Environmental Engineering, 2022, 19(3): 1-10.
[7]WANG J C, AN C W, YE B Y, et al. CL-20/CAB energetic composite microspheres prepared by premix membrane emulsification [J]. AIP Advances, 2020, 10(12): 125005.
[8]李陈, 马凤国, 睢贺良, 等. 含能材料热分解动力学求解及热安全性理论评估的进展[J]. 含能材料, 2020, 28(8): 798-809.
LI C, MA F G, SUI H L, et al. Review on thermal decomposition kinetics and theoretical evaluation method for thermal safety of energetic materials [J]. Chinese Journal of Energetic Materials, 2020, 28(8): 798-809.
[9]SEIFI H, GHOLAMI T, SEIFI S, et al. A review on current trends in thermal analysis and hyphenated techniques in the investigation of physical, mechanical and chemical properties of nanomaterials [J]. Journal of Analytical and Applied Pyrolysis, 2020, 149: 104840.
[10]PE-ALVER R, ARROYO-MANZANARES N, L-PEZ-GARC-A I, et al. An overview of microplastics characterization by thermal analysis [J]. Chemosphere, 2020, 242: 125170.
[11]杨学林, 曾诚成, 巩飞艳, 等. 聚多巴胺改性的CL-20和FOX-7炸药力学性能及热稳定性[J]. 含能材料, 2021, 29(11): 1049-1060.
YANG X L, ZENG C C, GONG F Y, et al. Mechanical properties and thermal stabilities of CL-20 and FOX-7 explosives modified by polydopamine [J]. Chinese Journal of Energetic Materials, 2021, 29(11): 1049-1060.
[12]武文杰, 刘旭, 马宇谦, 等. 含不同粒度HMX的PBX(HMX)在AP促进下的热分解及激光点火性能[J]. 火炸药学报, 2022, 45(5): 711-721.
WU W J, LIU X, MA Y Q, et al. Thermal decomposition and laser ignition properties of PBX(HMX)/AP composites containing different granularity of HMX [J]. Chinese Journal of Explosive & Propellants, 2022, 45(5): 711-721.
[13]LIU J, BAO X Z, RONG Y B, et al. Preparation of nano-RDX-based PBX and its thermal decomposition properties [J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(3): 2693-2698.
[14]ELBEIH A, ABD-ELGHANY M, KLAP-TKE T M. Kinetic parameters of PBX based on cis-1,3,4,6-tetranitroocta-hydroimidazo-[4,5-d] imidazole obtained by isoconversional methods using different thermal analysis techniques [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(5): 468-476.
[15]孙金华, 陆守香, 孙占辉. 自反应性化学物质的热危险性评价方法[J]. 中国安全科学学报, 2003, 13(4): 44-47.
SUN J H, LU S X, SUN Z H. Study on thermal risk evaluation of reactive substance [J]. China Safety Science Journal, 2003, 13(4): 44-47.
[16]Recommendations on the transport of dangerous goods: model regulations [M]. New York: United Nations, 2009.
[17]BAO F, JIN S H, LI Y, et al. Thermal decomposition and thermal kinetic simulation of ammonium 3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole) [J]. Journal of Thermal Analysis and Calorimetry, 2021, 146(2): 911-917.
[18]NIU H, CHEN S S, JIN S H, et al. Preparation, nonisothermal decomposition kinetics, heat capacity, and safety parameters of TKX50based PBX [J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(3): 3193-3199.
[19]张伟, 蒋军成, 邹梦雅, 等. 1,1-二叔戊基过氧环己烷热危险性分析[J]. 中国安全科学学报, 2019, 29(2): 82-87.
ZHANG W, JIANG J C, ZOU M Y, et al. Thermal hazard analysis of 1,1-di(tert-amylperoxy) cyclohexane [J]. China Safety Science Journal, 2019, 29(2): 82-87.
[20]徐飞扬, 吴星亮, 王旭, 等. 甲基肼热分解的动力学特性及热安全性[J]. 含能材料, 2022, 30(2): 171-177.
XU F Y, WU X L, WANG X, et al. Kinetic characteristics of thermal decomposition and thermal safety for methylhydrazine [J]. Chinese Journal of Energetic Materials, 2022, 30(2): 171-177.
[21]WU X L, LIU D B, XU Y B, et al. Thermal safety performance evaluation for typical free radical polymerization initiator of tert-butyl peroxypivalate [J]. ChemistrySelect, 2020, 5(35): 10835-10840.
[22]MAI Y J, JIE X H, LIU L L, et al. Thermal stability of nanocrystalline layers fabricated by surface nanocrystallization [J]. Applied Surface Science, 2010, 256(7): 1972-1975.
[23]丁炯, 王继晨, 郭璐, 等. 基于动态特性补偿的绝热加速量热仪温度随动控制优化[J]. 传感技术学报, 2018, 31(12): 1805-1810.
DING J, WANG J C, GUO L, et al. Optimization of temperature tracking control in adiabatic accelerating rate calorimeter based on the dynamic characteristics compensation [J]. Chinese Journal of Sensors and Actuators, 2018, 31(12): 1805-1810.
[24]VYAZOVKIN S. Chapter 4: modern isoconversional kinetics: from misconceptions to advances [M]// Handbook of Thermal Analysis and Calorimetry: Volume 6. 2018: 131-172.
[25]DOLIWA A, SIEMASZKO A. Hermite-Padé approximation and integrability [J]. Journal of Approximation Theory, 2023, 292: 105910.
[26]中国兵器工业总公司. 炸药试验方法:GJB 772A—1997 [S]. 1997.
NORINCO. Explosive test method: GJB 772A—1997 [S]. 1997.
[27]张广源, 李志华, 金韶华, 等. 加速绝热量热仪用于含能材料热分解研究进展[J]. 兵器装备工程学报, 2016, 37(4): 85-88, 94.
ZHANG G Y, LI Z H, JIN S H, et al. Accelerating rate calorimeter and its application in thermal decomposition investigation of energetic materials [J]. Journal of Ordnance Equipment Engineering, 2016, 37(4):85-88, 94.
[28]SUN Q, JIANG L, LI M, et al. Assessment on thermal hazards of reactive chemicals in industry: state of the art and perspectives [J]. Progress in Energy and Combustion Science, 2020, 78: 100832.
[29]TOWNSEND D I, TOU J C. Thermal hazard evaluation by an accelerating rate calorimeter [J]. Thermochimica Acta, 1980, 37(1): 1-30.
[30]BRUCKER K A, MAJDALANI J. Equivalent thermal conductivity for compact heat sink models based on the Churchill and Chu correlation [J]. IEEE Transactions on Components and Packaging Technologies, 2003, 26(1): 158-164.