[1]柴悦①,姜林②,李宓②,等.小药量RDX基PBX的热爆炸特性及对大药量热安全性的预测[J].爆破器材,2024,53(03):17-25.[doi:10.3969/j.issn.1001-8352.2024.03.003]
 CHAI Yue,JIANG Lin,LI Mi,et al.Thermal Explosion Characteristics of RDX Based PBX with Small Weight and Prediction of Its Thermal Safety with Large Weight[J].EXPLOSIVE MATERIALS,2024,53(03):17-25.[doi:10.3969/j.issn.1001-8352.2024.03.003]
点击复制

小药量RDX基PBX的热爆炸特性及对大药量热安全性的预测()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年03
页码:
17-25
栏目:
基础理论
出版日期:
2024-06-04

文章信息/Info

Title:
Thermal Explosion Characteristics of RDX Based PBX with Small Weight and Prediction of Its Thermal Safety with Large Weight
文章编号:
5892
作者:
柴悦姜林李宓马腾吴星亮徐森①③
①南京理工大学化学与化工学院(江苏南京,210094)
②南京理工大学机械工程学院(江苏南京,210094)
③国家民用爆破器材质量检验检测中心(江苏南京,210094)
Author(s):
CHAI Yue JIANG Lin LI Mi MA Teng WU Xingliang XU Sen①③
①School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②School of Mechanical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
③China National Quality Inspection and Testing Center for Industrial Explosive Materials (Jiangsu Nanjing, 210094)
关键词:
高聚物黏结炸药(PBX)热分解特性热动力学热安全性自加速分解温度(SADT)
Keywords:
polymer bonded explosive (PBX) thermal decomposition property thermodynamics thermal safety self-accelerating decomposition temperature (SADT)
分类号:
TQ560.7
DOI:
10.3969/j.issn.1001-8352.2024.03.003
文献标志码:
A
摘要:
为研究高聚物黏结炸药(PBX)的热分解特性和热安全性,探究了2种小药量试验对PBX的自加速分解温度(SADT)预测的准确性。采用差示扫描量热仪(DSC)和绝热加速量热仪(ARC)同时研究了一种典型RDX基PBX的热分解行为,分别计算了PBX的热动力学及热安全性参数。基于Semenov理论,进一步计算得到2种热分析方法下PBX的SADT,并结合等温储存试验验证了结果的准确性。DSC分析得到,PBX的活化能为125.70 kJ/mol,热爆炸临界温度为460.08 K,10 g量级的不归还温度TNR为417.22 K,SADT为405.72 K;ARC分析得到,10 g量级的PBX的TNR为427.97 K,SADT为421.57 K。通过7 d恒温热爆炸试验,确定PBX的最小SADT为418.15 K,证明基于ARC的小药量试验预测大药量样品的热安全性更符合实际情况。可用于解决炸药在储存、生产、运输和使用等过程中的安全问题。
Abstract:
In order to investigate the thermal decomposition characteristics and thermal safety of polymer bonded explosives (PBX), the accuracy of two small weight experiments in predicting the self accelerated decomposition temperature (SADT) of PBX was investigated. The thermal decomposition behaviors of a typical RDX based PBX were studied simultaneously using differential scanning calorimetry (DSC) and adiabatic accelerated calorimetry (ARC), and thermodynamic parameters and thermal safety parameters of PBX were calculated. Based on Semenov theory, SADT of PBX under the two thermal analysis methods was further calculated, and the accuracy of the results was verified by isothermal storage experiments. DSC analysis results show that activation energy of PBX is 125.70 kJ/mol, critical temperature for thermal explosion is 460.08 K, non return temperature TNR at the 10 g level is 417.22 K, and SADT is 405.72 K. ARC analysis results show that TNR of PBX at the 10 g level is 427.97 K, and SADT is 421.57 K. Through a 7-day constant temperature thermal explosion test, the minimum SADT of PBX was determined to be 418.15 K, proving that predicting the thermal safety of large weight samples based on ARC small weight test is more in line with the actual situation. It can be used to solve the safety issues of explosives during storage, production, transportation, and use.

参考文献/References:

[1]黄亨建, 路中华, 刘晓波, 等. 欧美钝感弹药技术发展现状与趋势[J]. 含能材料, 2017, 25(8): 618-621.
[2]黄辉, 黄亨建. 不敏感PBX炸药的多尺度结构与感度[J]. 中国材料进展, 2022, 41(2): 108-116.
HUANG H, HUANG H J. Multi-scale structures and sensitivity of insensitive polymer bounded explosives [J]. Materials China, 2022, 41(2): 108-116.
[3]HAMSHERE B L, LOCHERT I J, DEXTER R M. Evaluation of PBXN-109: the explosive fill for the penguin anti-ship missile warhead: DSTOTR1471[R].Edinburgh South Australia, Australia: DSTO Systems Sciences Laboratory, 2003.
[4]邓海, 李刚, 郭洪卫, 等. 不敏感弹药技术的发展现状与趋势[J]. 兵器装备工程学报, 2022, 43(2): 137-144.
DENG H, LI G, GUO H W, et al. Development status and trend of insensitive ammunition technology [J]. Journal of Ordnance Equipment Engineering, 2022, 43(2): 137-144.
[5]马晗晔, 王雨时, 王光宇. 国外不敏感炸药综述[J]. 兵器装备工程学报, 2020, 41(5): 166-174.
MA H Y, WANG Y S, WANG G Y. Summary of foreign insensitive explosives [J]. Journal of Ordnance Equipment Engineering, 2020, 41(5): 166-174.
[6]叶青, 余永刚. 含能材料热安全性研究进展[J]. 装备环境工程, 2022, 19(3): 1-10.
YE Q, YU Y G. Thermal safety of energetic materials [J]. Equipment Environmental Engineering, 2022, 19(3): 1-10.
[7]WANG J C, AN C W, YE B Y, et al. CL-20/CAB energetic composite microspheres prepared by premix membrane emulsification [J]. AIP Advances, 2020, 10(12): 125005.
[8]李陈, 马凤国, 睢贺良, 等. 含能材料热分解动力学求解及热安全性理论评估的进展[J]. 含能材料, 2020, 28(8): 798-809.
LI C, MA F G, SUI H L, et al. Review on thermal decomposition kinetics and theoretical evaluation method for thermal safety of energetic materials [J]. Chinese Journal of Energetic Materials, 2020, 28(8): 798-809.
[9]SEIFI H, GHOLAMI T, SEIFI S, et al. A review on current trends in thermal analysis and hyphenated techniques in the investigation of physical, mechanical and chemical properties of nanomaterials [J]. Journal of Analytical and Applied Pyrolysis, 2020, 149: 104840.
[10]PE-ALVER R, ARROYO-MANZANARES N, L-PEZ-GARC-A I, et al. An overview of microplastics characterization by thermal analysis [J]. Chemosphere, 2020, 242: 125170.
[11]杨学林, 曾诚成, 巩飞艳, 等. 聚多巴胺改性的CL-20和FOX-7炸药力学性能及热稳定性[J]. 含能材料, 2021, 29(11): 1049-1060.
YANG X L, ZENG C C, GONG F Y, et al. Mechanical properties and thermal stabilities of CL-20 and FOX-7 explosives modified by polydopamine [J]. Chinese Journal of Energetic Materials, 2021, 29(11): 1049-1060.
[12]武文杰, 刘旭, 马宇谦, 等. 含不同粒度HMX的PBX(HMX)在AP促进下的热分解及激光点火性能[J]. 火炸药学报, 2022, 45(5): 711-721.
WU W J, LIU X, MA Y Q, et al. Thermal decomposition and laser ignition properties of PBX(HMX)/AP composites containing different granularity of HMX [J]. Chinese Journal of Explosive & Propellants, 2022, 45(5): 711-721.
[13]LIU J, BAO X Z, RONG Y B, et al. Preparation of nano-RDX-based PBX and its thermal decomposition properties [J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(3): 2693-2698.
[14]ELBEIH A, ABD-ELGHANY M, KLAP-TKE T M. Kinetic parameters of PBX based on cis-1,3,4,6-tetranitroocta-hydroimidazo-[4,5-d] imidazole obtained by isoconversional methods using different thermal analysis techniques [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(5): 468-476.
[15]孙金华, 陆守香, 孙占辉. 自反应性化学物质的热危险性评价方法[J]. 中国安全科学学报, 2003, 13(4): 44-47.
SUN J H, LU S X, SUN Z H. Study on thermal risk evaluation of reactive substance [J]. China Safety Science Journal, 2003, 13(4): 44-47.
[16]Recommendations on the transport of dangerous goods: model regulations [M]. New York: United Nations, 2009.
[17]BAO F, JIN S H, LI Y, et al. Thermal decomposition and thermal kinetic simulation of ammonium 3,3′-dinitrimino-5,5′-bis(1H-1,2,4-triazole) [J]. Journal of Thermal Analysis and Calorimetry, 2021, 146(2): 911-917.
[18]NIU H, CHEN S S, JIN S H, et al. Preparation, nonisothermal decomposition kinetics, heat capacity, and safety parameters of TKX50based PBX [J]. Journal of Thermal Analysis and Calorimetry, 2018, 131(3): 3193-3199.
[19]张伟, 蒋军成, 邹梦雅, 等. 1,1-二叔戊基过氧环己烷热危险性分析[J]. 中国安全科学学报, 2019, 29(2): 82-87.
ZHANG W, JIANG J C, ZOU M Y, et al. Thermal hazard analysis of 1,1-di(tert-amylperoxy) cyclohexane [J]. China Safety Science Journal, 2019, 29(2): 82-87.
[20]徐飞扬, 吴星亮, 王旭, 等. 甲基肼热分解的动力学特性及热安全性[J]. 含能材料, 2022, 30(2): 171-177.
XU F Y, WU X L, WANG X, et al. Kinetic characteristics of thermal decomposition and thermal safety for methylhydrazine [J]. Chinese Journal of Energetic Materials, 2022, 30(2): 171-177.
[21]WU X L, LIU D B, XU Y B, et al. Thermal safety performance evaluation for typical free radical polymerization initiator of tert-butyl peroxypivalate [J]. ChemistrySelect, 2020, 5(35): 10835-10840.
[22]MAI Y J, JIE X H, LIU L L, et al. Thermal stability of nanocrystalline layers fabricated by surface nanocrystallization [J]. Applied Surface Science, 2010, 256(7): 1972-1975.
[23]丁炯, 王继晨, 郭璐, 等. 基于动态特性补偿的绝热加速量热仪温度随动控制优化[J]. 传感技术学报, 2018, 31(12): 1805-1810.
DING J, WANG J C, GUO L, et al. Optimization of temperature tracking control in adiabatic accelerating rate calorimeter based on the dynamic characteristics compensation [J]. Chinese Journal of Sensors and Actuators, 2018, 31(12): 1805-1810.
[24]VYAZOVKIN S. Chapter 4: modern isoconversional kinetics: from misconceptions to advances [M]// Handbook of Thermal Analysis and Calorimetry: Volume 6. 2018: 131-172.
[25]DOLIWA A, SIEMASZKO A. Hermite-Padé approximation and integrability [J]. Journal of Approximation Theory, 2023, 292: 105910.
[26]中国兵器工业总公司. 炸药试验方法:GJB 772A—1997 [S]. 1997.
NORINCO. Explosive test method: GJB 772A—1997 [S]. 1997.
[27]张广源, 李志华, 金韶华, 等. 加速绝热量热仪用于含能材料热分解研究进展[J]. 兵器装备工程学报, 2016, 37(4): 85-88, 94.
ZHANG G Y, LI Z H, JIN S H, et al. Accelerating rate calorimeter and its application in thermal decomposition investigation of energetic materials [J]. Journal of Ordnance Equipment Engineering, 2016, 37(4):85-88, 94.
[28]SUN Q, JIANG L, LI M, et al. Assessment on thermal hazards of reactive chemicals in industry: state of the art and perspectives [J]. Progress in Energy and Combustion Science, 2020, 78: 100832.
[29]TOWNSEND D I, TOU J C. Thermal hazard evaluation by an accelerating rate calorimeter [J]. Thermochimica Acta, 1980, 37(1): 1-30.
[30]BRUCKER K A, MAJDALANI J. Equivalent thermal conductivity for compact heat sink models based on the Churchill and Chu correlation [J]. IEEE Transactions on Components and Packaging Technologies, 2003, 26(1): 158-164.

相似文献/References:

[1]李敏①,陈相②,谭柳①,等.尺度效应对硝酸铵热分解温度特性的影响[J].爆破器材,2015,44(04):29.[doi:10.3969/j.issn.1001-8352.2015.04.007]
 LI Min,CHEN Xiang,TAN Liu,et al.Influence of Scale Effect on Thermal Decomposition Temperature Characteristic of Ammonium Nitrate[J].EXPLOSIVE MATERIALS,2015,44(03):29.[doi:10.3969/j.issn.1001-8352.2015.04.007]
[2]何志伟,汪扬文,王洋,等.氟橡胶包覆ANPyO造型粉的热安全性研究[J].爆破器材,2021,50(02):24.[doi:10.3969/j.issn.1001-8352.2021.02.005]
 HE Zhiwei,WANG Yangwen,WANG Yang,et al.Thermal Safety of ANPyO Coated with Fluorine Rubber[J].EXPLOSIVE MATERIALS,2021,50(03):24.[doi:10.3969/j.issn.1001-8352.2021.02.005]

备注/Memo

备注/Memo:
收稿日期:2023-11-10
基金项目:国家自然科学基金(12272184)
第一作者:柴悦(2000—),女,硕士,主要从事含能材料的安全性研究。E-mail:chaiyue@njust.edu.cn
通信作者:吴星亮(1994—),男,博士,主要从事含能材料性能研究。E-mail:wuxingliang94@njust.edu.cn
更新日期/Last Update: 2024-06-03