[1]LEE H, LITZINGER T A. Thermal decomposition of HAN-based liquid propellants [J]. Combustion and Flame, 2001, 127(4): 2205-2222.
[2]FERGUSON R E, ESPARZA A A, SHAFIROVICH E. Combustion of aqueous HAN/methanol propellants at high pressures [J]. Proceedings of the Combustion Institute, 2021, 38(2): 3295-3302.
[3]KATSUMI T, HORI K. Successful development of HAN based green propellant [J]. Energetic Materials Frontiers, 2021, 2(3): 228-237.
[4]SACKHEIM R L, MASSE R K. Green propulsion advancement: challenging the maturity of monopropellant hydrazine [J]. Journal of Propulsion and Power, 2014, 30(2): 265-276.
[5]AMROUSSE R, KATSUMI T, ITOUYAMA N, et al. New HAN-based mixtures for reaction control system and low toxic spacecraft propulsion subsystem: Thermal decomposition and possible thruster applications [J]. Combustion and Flame, 2015, 162(6): 2686-2692.
[6]AMROUSSE R, KATSUMI T, AZUMA N, et al. Hydroxylammonium nitrate (HAN)-based green propellant as alternative energy resource for potential hydrazine substitution: from lab scale to pilot plant scale-up [J]. Combustion and Flame, 2017, 176: 334-348.
[7]鲍立荣, 汪辉, 陈永义, 等. 硝酸羟胺基绿色推进剂研究进展[J]. 含能材料, 2020, 28(12): 1200-1210.
BAO L R, WANG H, CHEN Y Y, et al. Review on hydroxylammonium nitrate based green propellant [J]. Chinese Journal of Energetic Materials, 2020, 28(12): 1200-1210.
[8]KUMASAKI M. Calorimetric study on the decomposition of hydroxylamine in the presence of transition metals [J]. Journal of Hazardous Materials, 2004, 115(1/2/3): 57-62.
[9]ESPARZA A A, FERGUSON R E, CHOUDHURI A, et al. Thermoanalytical studies on the thermal and catalytic decomposition of aqueous hydroxylammonium nitrate solution [J]. Combustion and Flame, 2018, 193: 417-423.
[10]AMROUSSE R, BRAHMI R, BATONNEAU Y, et al. Preparation of monolithic catalysts for space propulsion applications [J]. Studies in Surface Science and Catalysis, 2010, 175: 755-758.
[11]KHARE P, YANG V, MENG H, et al. Thermal and electrolytic decomposition and ignition of HAN-water solutions [J]. Combustion Science and Technology, 2015, 187(7): 1065-1078.
[12]CHAI W S, CHEAH K H, MENG H, er al. Experimental and analytical study on electrolytic decomposition of HAN-water solution using graphite electrodes [J]. Journal of Molecular Liquids, 2019, 293: 111496.
[13]刘建国, 安振涛, 张倩, 等. Fe3+掺杂对硝酸羟胺热稳定性的影响及其机理[J]. 火炸药学报, 2017, 40(1): 53-58.
LIU J G, AN Z T, ZHANG Q, et al. Effects of doping of Fe3+on the thermal stability of hydroxylamine nitrate and its mechanism [J]. Chinese Journal of Explosives & Propellant, 2017, 40(1): 53-58.
[14]HARLOW D G, FELT R E, AGNEW S, et al. Technical report on hydroxylamine nitrate: DOE/EH-0555[R]. Department of Energy, US, 1998.
[15]刘建国, 安振涛, 张倩, 等. 硝酸羟胺的热稳定性评估及热分解机理研究[J]. 材料导报, 2017, 31(4): 145-152.
LIU J G, AN Z T, ZHANG Q, et al. Thermal stability evaluation and thermal decomposition mechanism of hydroxylamine nitrate [J]. Materials Review, 2017, 31(4): 145-152.
[16]施特塞尔. 化工工艺的热安全:风险评估与工艺设计 [M]. 陈网桦, 彭金华, 陈利平, 译.北京: 科学出版社, 2009.
[17]WANG Y R, LIU S H, CHENG Y C. Thermal analysis and hazards evaluation for HTP-65W through calorimetric technologies and simulation [J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(4): 1483-1492.
[18]STARINK M J. A new method for the derivation of activation energies from experiments performed at constant heating rate [J]. Thermochimica Acta, 1996, 288(1/2): 97-104.
[19]LIU L J, WEI C Y, GUO Y Y, et al. Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry [J]. Journal of Hazardous Materials, 2009, 162(2/3): 1217-1222.
[20]AGNIHOTRI R, OOMMEN C. Kinetics and mechanism of thermal and catalytic decomposition of hydroxylammonium nitrate (HAN) monopropellant [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(2): 286-298.
[21]崔子祥, 甘俊珍, 范杰, 等. Pb-TKX-50燃烧催化剂的合成及热分解性能[J]. 火炸药学报, 2020, 43(1): 12-18.
CUI Z X, GAN J Z, FAN J, et al. Synthesis and thermal decomposition properties of Pb-TKX-50 combustion catalyst [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 12-18.
[22]ZHANG T L, HU R Z, XIE Y, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC [J]. Thermochi-mica Acta, 1994, 244: 171-176.
[23]HU Y, MA H X, LI J F, et al. A density-functional theoretical investigation, thermodynamic properties and adiabatic time-to-explosion of ATO [J]. Chinese Journal of Explosives & Propellants, 2009, 32(4): 18-22.
胡银, 马海霞, 李军锋, 等. ATO的DFT研究、热力学性质及绝热至爆时间[J]. 火炸药学报, 2009, 32(4): 18-22.
[24]XU F Y, YAO Y D, LI W H, et al. Effects of gold catalyst on the thermal decomposition characteristics and thermal safety of methylhydrazine [J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(16): 9037-9043.
[25]LI M M, WU R H, GAO Y C, et al. The influence of CL-20 particle size on the thermal decomposition and combustion performance of 3D printed photocurable propellants [J]. Chinese Journal of Explosives & Propellants, 2023, 46(4): 345-351.
李曼曼, 武若蘅, 高宇晨, 等. CL-20粒度对3D打印光固化发射药的热分解和燃烧性能的影响[J]. 火炸药学报, 2023, 46(4): 345-351.
[26]KANG L M, WU S Z, ZHOU B J, et al. Experimental and simulation studies on the influencing factors of mechanical stimulation threshold of HAN-based liquid propellant [J]. Journal of Energetic Materials, DOI: 10.1080/07370652.2023.2233507.
[27]李亚裕. 液体推进剂[M]. 北京: 中国宇航出版社, 2011.