[1]康立敏①②,徐森①②,朱晨光①,等.硝酸羟胺基液体推进剂的热安全性研究[J].爆破器材,2024,53(04):1-8.[doi:10.3969/j.issn.1001-8352.2024.04.001]
 KANG Limin,XU Sen,ZHU Chenguang,et al.Study on Thermal Safety of Hydroxylamine Nitrate Based Liquid Propellants[J].EXPLOSIVE MATERIALS,2024,53(04):1-8.[doi:10.3969/j.issn.1001-8352.2024.04.001]
点击复制

硝酸羟胺基液体推进剂的热安全性研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年04
页码:
1-8
栏目:
基础理论
出版日期:
2024-07-18

文章信息/Info

Title:
Study on Thermal Safety of Hydroxylamine Nitrate Based Liquid Propellants
文章编号:
5878
作者:
康立敏①②徐森①②朱晨光徐飞扬刘静平①②邵星宇
①南京理工大学化学与化工学院(江苏南京,210094)
②南京理工大学化学材料测试中心(江苏南京,210094)
Author(s):
KANG Limin①② XU Sen①② ZHU Chenguang XU Feiyang LIU Jingping①② SHAO Xingyu
①School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②Chemical Materials Testing Center, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
硝酸羟胺(HAN)热安全性撞击能量DSCBAM
Keywords:
hydroxylamine nitrate (HAN) thermal safety impact energy DSC BAM
分类号:
TQ560.71; TV511
DOI:
10.3969/j.issn.1001-8352.2024.04.001
文献标志码:
A
摘要:
为了评估硝酸羟胺(HAN)基液体推进剂在生产、储存、运输以及使用过程中的安全性,利用差式扫描量热仪DSC测试了热分解过程,计算了热安全参数;并利用BAM撞击感度仪测试了撞击能量随温度的变化。结果显示:K-A-S法、F-W-O法和Starink法计算得到的表观活化能分别为154.8、154.6、155.6 kJ/mol;热分解自由能、活化焓和活化熵分别为128.2、150.9 kJ/mol和48.9 J/mol;热爆炸临界温度为204.2 ℃;绝热至爆时间为3.92 ~ 55.52 s。使用AKTS软件得到,2、 4、 8 h和24 h绝热诱导期对应的温度分别为123.4、119.1、114.8 ℃和108.2 ℃。包装质量为0.01、 5.00、 25.00、 50.00 kg和100.00 kg时,自加速分解温度依次为116、104、103、102 ℃和101 ℃。不同温度下,临界撞击能量分别为>50(25 ℃)、 40(80 ℃)、 25(90 ℃)、 10 J(100 ℃)和5 J(110 ℃)。因此,在生产、储存和运输HAN基液体推进剂的过程中需要避免因碰撞等原因产生高温。
Abstract:
In order to evaluate the safety of hydroxylamine nitrate (HAN) based liquid propellants in production, storage, transportation and use, thermal decomposition process of the propellant was studied using a differential scanning calorimeter (DSC), and thermal safety parameters were also calculated. Changes of impact energy with temperature were tested by a BAM impact sensitivity tester. The results show that the apparent activation energies obtained by K-A-S, F-W-O, and Starink methods are 154.8, 154.6 kJ/mol and 155.6 kJ/mol, respectively. Thermal decomposition free energy, activation enthalpy, and activation entropy are 128.2, 150.9 kJ/mol and 48.9 J/mol, respectively. Critical temperature of thermal explosion is 204.2 ℃, and adiabatic time to explosion is about 3.92-55.52 s. Using AKTS software, the temperature corresponding to the induction period of 2, 4, 8 h and 24 h is 123.4, 119.1, 114.8 ℃ and 108.2 ℃, respectively. The self-accelerating decomposition temperature of packaging weights of 0.01, 5.00, 25.00, 50.00 kg and 100.00 kg are 116, 104, 103, 102 ℃ and 101℃, respectively. Critical impact energies at different temperatures are >50 (25 ℃), 40 (80 ℃), 25 (90 ℃), 10 J (100 ℃) and 5 J (110 ℃). It is necessary to avoid high temperature caused by collision during the production, storage, and transportation of HAN based liquid propellants.

参考文献/References:

[1]LEE H, LITZINGER T A. Thermal decomposition of HAN-based liquid propellants [J]. Combustion and Flame, 2001, 127(4): 2205-2222.
[2]FERGUSON R E, ESPARZA A A, SHAFIROVICH E. Combustion of aqueous HAN/methanol propellants at high pressures [J]. Proceedings of the Combustion Institute, 2021, 38(2): 3295-3302.
[3]KATSUMI T, HORI K. Successful development of HAN based green propellant [J]. Energetic Materials Frontiers, 2021, 2(3): 228-237.
[4]SACKHEIM R L, MASSE R K. Green propulsion advancement: challenging the maturity of monopropellant hydrazine [J]. Journal of Propulsion and Power, 2014, 30(2): 265-276.
[5]AMROUSSE R, KATSUMI T, ITOUYAMA N, et al. New HAN-based mixtures for reaction control system and low toxic spacecraft propulsion subsystem: Thermal decomposition and possible thruster applications [J]. Combustion and Flame, 2015, 162(6): 2686-2692.
[6]AMROUSSE R, KATSUMI T, AZUMA N, et al. Hydroxylammonium nitrate (HAN)-based green propellant as alternative energy resource for potential hydrazine substitution: from lab scale to pilot plant scale-up [J]. Combustion and Flame, 2017, 176: 334-348.
[7]鲍立荣, 汪辉, 陈永义, 等. 硝酸羟胺基绿色推进剂研究进展[J]. 含能材料, 2020, 28(12): 1200-1210.
BAO L R, WANG H, CHEN Y Y, et al. Review on hydroxylammonium nitrate based green propellant [J]. Chinese Journal of Energetic Materials, 2020, 28(12): 1200-1210.
[8]KUMASAKI M. Calorimetric study on the decomposition of hydroxylamine in the presence of transition metals [J]. Journal of Hazardous Materials, 2004, 115(1/2/3): 57-62.
[9]ESPARZA A A, FERGUSON R E, CHOUDHURI A, et al. Thermoanalytical studies on the thermal and catalytic decomposition of aqueous hydroxylammonium nitrate solution [J]. Combustion and Flame, 2018, 193: 417-423.
[10]AMROUSSE R, BRAHMI R, BATONNEAU Y, et al. Preparation of monolithic catalysts for space propulsion applications [J]. Studies in Surface Science and Catalysis, 2010, 175: 755-758.
[11]KHARE P, YANG V, MENG H, et al. Thermal and electrolytic decomposition and ignition of HAN-water solutions [J]. Combustion Science and Technology, 2015, 187(7): 1065-1078.
[12]CHAI W S, CHEAH K H, MENG H, er al. Experimental and analytical study on electrolytic decomposition of HAN-water solution using graphite electrodes [J]. Journal of Molecular Liquids, 2019, 293: 111496.
[13]刘建国, 安振涛, 张倩, 等. Fe3+掺杂对硝酸羟胺热稳定性的影响及其机理[J]. 火炸药学报, 2017, 40(1): 53-58.
LIU J G, AN Z T, ZHANG Q, et al. Effects of doping of Fe3+on the thermal stability of hydroxylamine nitrate and its mechanism [J]. Chinese Journal of Explosives & Propellant, 2017, 40(1): 53-58.
[14]HARLOW D G, FELT R E, AGNEW S, et al. Technical report on hydroxylamine nitrate: DOE/EH-0555[R]. Department of Energy, US, 1998.
[15]刘建国, 安振涛, 张倩, 等. 硝酸羟胺的热稳定性评估及热分解机理研究[J]. 材料导报, 2017, 31(4): 145-152.
LIU J G, AN Z T, ZHANG Q, et al. Thermal stability evaluation and thermal decomposition mechanism of hydroxylamine nitrate [J]. Materials Review, 2017, 31(4): 145-152.
[16]施特塞尔. 化工工艺的热安全:风险评估与工艺设计 [M]. 陈网桦, 彭金华, 陈利平, 译.北京: 科学出版社, 2009.
[17]WANG Y R, LIU S H, CHENG Y C. Thermal analysis and hazards evaluation for HTP-65W through calorimetric technologies and simulation [J]. Journal of Thermal Analysis and Calorimetry, 2021, 144(4): 1483-1492.
[18]STARINK M J. A new method for the derivation of activation energies from experiments performed at constant heating rate [J]. Thermochimica Acta, 1996, 288(1/2): 97-104.
[19]LIU L J, WEI C Y, GUO Y Y, et al. Hydroxylamine nitrate self-catalytic kinetics study with adiabatic calorimetry [J]. Journal of Hazardous Materials, 2009, 162(2/3): 1217-1222.
[20]AGNIHOTRI R, OOMMEN C. Kinetics and mechanism of thermal and catalytic decomposition of hydroxylammonium nitrate (HAN) monopropellant [J]. Propellants, Explosives, Pyrotechnics, 2021, 46(2): 286-298.
[21]崔子祥, 甘俊珍, 范杰, 等. Pb-TKX-50燃烧催化剂的合成及热分解性能[J]. 火炸药学报, 2020, 43(1): 12-18.
CUI Z X, GAN J Z, FAN J, et al. Synthesis and thermal decomposition properties of Pb-TKX-50 combustion catalyst [J]. Chinese Journal of Explosives & Propellants, 2020, 43(1): 12-18.
[22]ZHANG T L, HU R Z, XIE Y, et al. The estimation of critical temperatures of thermal explosion for energetic materials using non-isothermal DSC [J]. Thermochi-mica Acta, 1994, 244: 171-176.
[23]HU Y, MA H X, LI J F, et al. A density-functional theoretical investigation, thermodynamic properties and adiabatic time-to-explosion of ATO [J]. Chinese Journal of Explosives & Propellants, 2009, 32(4): 18-22.
胡银, 马海霞, 李军锋, 等. ATO的DFT研究、热力学性质及绝热至爆时间[J]. 火炸药学报, 2009, 32(4): 18-22.
[24]XU F Y, YAO Y D, LI W H, et al. Effects of gold catalyst on the thermal decomposition characteristics and thermal safety of methylhydrazine [J]. Journal of Thermal Analysis and Calorimetry, 2022, 147(16): 9037-9043.
[25]LI M M, WU R H, GAO Y C, et al. The influence of CL-20 particle size on the thermal decomposition and combustion performance of 3D printed photocurable propellants [J]. Chinese Journal of Explosives & Propellants, 2023, 46(4): 345-351.
李曼曼, 武若蘅, 高宇晨, 等. CL-20粒度对3D打印光固化发射药的热分解和燃烧性能的影响[J]. 火炸药学报, 2023, 46(4): 345-351.
[26]KANG L M, WU S Z, ZHOU B J, et al. Experimental and simulation studies on the influencing factors of mechanical stimulation threshold of HAN-based liquid propellant [J]. Journal of Energetic Materials, DOI: 10.1080/07370652.2023.2233507.
[27]李亚裕. 液体推进剂[M]. 北京: 中国宇航出版社, 2011.

相似文献/References:

[1]王晨晨,王伯良,黄菊,等.混合炸药中RDX对其热安全性的影响研究[J].爆破器材,2012,41(02):8.
 WANG Chenchen,WANG Boliang,HUANG Jü,et al.Influence of RDX on Thermal Safety of Composite Explosive[J].EXPLOSIVE MATERIALS,2012,41(04):8.
[2]李敏①,陈相②,谭柳①,等.尺度效应对硝酸铵热分解温度特性的影响[J].爆破器材,2015,44(04):29.[doi:10.3969/j.issn.1001-8352.2015.04.007]
 LI Min,CHEN Xiang,TAN Liu,et al.Influence of Scale Effect on Thermal Decomposition Temperature Characteristic of Ammonium Nitrate[J].EXPLOSIVE MATERIALS,2015,44(04):29.[doi:10.3969/j.issn.1001-8352.2015.04.007]
[3]雷伟,罗一鸣,张蒙蒙,等.3,4-二硝基吡唑(DNP)的研究进展[J].爆破器材,2020,49(05):1.[doi:doi:10.3969/j.issn.1001-8352.2020.05.002]
 LEI Wei,LUO Yiming,ZHANG Mengmeng,et al.Research Progress of 3,4-Dinitropyrazole (DNP)[J].EXPLOSIVE MATERIALS,2020,49(04):1.[doi:doi:10.3969/j.issn.1001-8352.2020.05.002]
[4]何志伟,汪扬文,王洋,等.氟橡胶包覆ANPyO造型粉的热安全性研究[J].爆破器材,2021,50(02):24.[doi:10.3969/j.issn.1001-8352.2021.02.005]
 HE Zhiwei,WANG Yangwen,WANG Yang,et al.Thermal Safety of ANPyO Coated with Fluorine Rubber[J].EXPLOSIVE MATERIALS,2021,50(04):24.[doi:10.3969/j.issn.1001-8352.2021.02.005]
[5]何志伟,葛玉强,孟涛,等.氟橡胶包覆TANPyO的热安全性研究[J].爆破器材,2022,51(01):19.[doi:10.3969/j.issn.1001-8352.2022.01.004]
 HE Zhiwei,GE Yuqiang,MENG Tao,et al.Thermal Safety of Fluoroelastomer Coated TANPyO[J].EXPLOSIVE MATERIALS,2022,51(04):19.[doi:10.3969/j.issn.1001-8352.2022.01.004]
[6]何志伟①,朱文宇①,葛玉强①,等.铝灰替代含铝乳化炸药中铝粉的可行性研究[J].爆破器材,2023,52(02):26.[doi:10.3969/j.issn.1001-8352.2023.02.006]
 HE Zhiwei,ZHU Wenyu,GE Yuqiang,et al.Feasibility Study on Substitution of Aluminum Powder in Aluminized Emulsion Explosive with Aluminum Ash[J].EXPLOSIVE MATERIALS,2023,52(04):26.[doi:10.3969/j.issn.1001-8352.2023.02.006]
[7]柴悦①,姜林②,李宓②,等.小药量RDX基PBX的热爆炸特性及对大药量热安全性的预测[J].爆破器材,2024,53(03):17.[doi:10.3969/j.issn.1001-8352.2024.03.003]
 CHAI Yue,JIANG Lin,LI Mi,et al.Thermal Explosion Characteristics of RDX Based PBX with Small Weight and Prediction of Its Thermal Safety with Large Weight[J].EXPLOSIVE MATERIALS,2024,53(04):17.[doi:10.3969/j.issn.1001-8352.2024.03.003]

备注/Memo

备注/Memo:
收稿日期:2023-09-12
基金项目:国家自然科学基金(12272184);中国博士后科学基金面上项目(2023M731695);江苏省卓越博士后计划
第一作者:康立敏(1988—),博士研究生,主要从事液体推进剂安全性方面的研究。E-mail:klm0316@njust.edu.cn
通信作者:徐森(1981—),教授,主要从事爆炸力学、含能材料爆轰、危险性分级方面的研究。E-mail:xusen@njust.edu.cn
更新日期/Last Update: 2024-07-16