[1]宁建国, 王成, 马天宝. 爆炸与冲击动力学[M]. 北京: 国防工业出版社, 2010.
NING J G, WANG C, MA T B. Explosion and Shock Dynamics [M]. Beijing: National Defense Industry Press, 2010.
[2]邵先锋, 赵捍东, 朱福林, 等. 爆炸冲击波作用于便携式防爆墙的绕射规律[J]. 爆破器材, 2017, 46(6): 6-10, 16.
SHAO X F, ZHAO H D, ZHU F L, et al. Diffraction laws of explosion shock waves acting on portable explosion-proof walls [J]. Explosive Materials, 2017, 46(6): 6-10, 16.
[3]崔小杰, 张孙嘉, 张国伟. 基于AUTODYN的复合防护结构数值模拟[J]. 爆破器材, 2019, 48(1): 52-57.
CUI X J, ZHANG S J, ZHANG G W. Numerical simulation of composite protective structure based on AUTODYN [J]. Explosive Materials, 2019, 48(6): 52-57.
[4]ZAKRAJSEK A J, MIKLASZEWSKI E J, GUILDENBECHER D R, et al. Experimental analysis of blast mitigation associated with water sheets [J]. AIP Conference Proceedings, 2012, 1426(1): 92-95.
[5]SON S F, ZAKRAJSEK A J, MIKLASZEWSKI E J, et al. Experimental investigation of blast mitigation for target protection [M]//Blast mitigation: experimental and numerical studies. New York: Springer, 2014: 1-19.
[6]叶经方, 董刚, 解立峰. 管道内水雾对冲击波衰减作用的实验研究[J]. 爆破器材, 2006, 35(5): 1-4.
YE J F, DONG G, XIE L F. Experimental investigation of shock wave decay by water mist in duct [J]. Explosive Materials, 2006, 35(5): 1-4.
[7]WILLAUER H D, ANANTH R, FARLEY J P, et al. Mitigation of TNT and Destex explosion effects using water mist [J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 1068-1073.
[8]陈鹏宇, 侯海量, 刘贵兵, 等. 水雾对舱内装药爆炸载荷的耗散效能试验研究[J]. 兵工学报, 2018, 39(5): 927-933.
CHEN P Y, HOU H L, LIU G B, et al. Experimental investigation on mitigating effect of water mist on the explosive shock wave inside cabin [J]. Acta Armamentarii, 2018, 39(5): 927-933.
[9]胡翔. 细水雾对冲击波的削弱作用研究[D]. 武汉: 武汉理工大学, 2018.
HU X. Research on the mitigation of shock wave using fine water mist [D]. Wuhan: Wuhan University of Technology, 2018.
[10]张国栋, 侯海量, 刘贵兵, 等. 舰船舱室水雾抑爆技术研究进展[J]. 舰船科学技术, 2020, 42(2): 1-11.
ZHANG G D, HOU H L, LIU G B, et al. Research progress of water mist explosion suppression technology in warship compartment [J]. Ship Science and Technology, 2020, 42(2): 1-11.
[11]李钰阳. 通道内水幕帘减弱冲击波强度问题的数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
LI Y Y. Numerical study of water curtain decreasing the intensity of shock wave in a channel [D]. Harbin: Harbin Engineering University, 2014.
[12]胡洋, 李士军, 李奇. 水幕衰减爆炸冲击波数值研究[J]. 舰船科学技术, 2020, 42(4): 61-64, 80.
HU Y, LI S J, LI Q. Attenuation of shock wave passing through water curtain [J]. Ship Science and Technology, 2020, 42(4): 61-64, 80.
[13]ZHANG L, CHEN L, FANG Q, et al. Mitigation of blast loadings on structures by an anti-blast plastic water wall [J]. Journal of Central South University, 2016, 23(2): 461-469.
[14]CHEN L, ZHANG L, FANG Q, et al. Performance based investigation on the construction of anti-blast water wall [J]. International Journal of Impact Engineering, 2015, 81: 17-33.
[15]BORNSTEIN H, PHILLPS P, ANDERSON C. Evaluation of the blast mitigating effects of fluid containers [J]. International Journal of Impact Engineering, 2015, 75: 222-228.
[16]BORNSTEIN H, RYAN S, MOURITZ A P. Blast mitigation with fluid containers: effect of mitigant type [J]. International Journal of Impact Engineering, 2018, 113: 106-117.
[17]ZHOU X Q, HAO H. Prediction of airblast loads on structures behind a protective barrier [J]. International Journal of Impact Engineering, 2008, 35(5): 363-375.
[18]徐启明. 低马赫数激波与燃料相互作用实验研究[D]. 南京: 南京理工大学, 2020.
XU Q M. Experimental study on the interaction of shock wave and fuel [D]. Nanjing: Nanjing University of Science and Technology, 2020.
[19]RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions [J]. Annual Review of Fluid Mechanics, 2011, 43(1): 117-140.
[20]TAYLOR G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I [J]. Proceedings of the Royal Society of London A, 1950, 201(1065): 192-196.