[1]张波涛①,岳亚军②,姜林②.悬挂式矩形水墙对爆炸冲击波削减效果的实验研究[J].爆破器材,2024,53(02):34-43.[doi:10.3969/j.issn.1001-8352.2024.02.006]
 ZHANG Botao,YUE Yajun,JIANG Lin.Experimental Study on the Reduction Effect of Suspended Rectangular Water Walls on Explosion Shock Waves[J].EXPLOSIVE MATERIALS,2024,53(02):34-43.[doi:10.3969/j.issn.1001-8352.2024.02.006]
点击复制

悬挂式矩形水墙对爆炸冲击波削减效果的实验研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年02
页码:
34-43
栏目:
爆炸材料
出版日期:
2024-04-03

文章信息/Info

Title:
Experimental Study on the Reduction Effect of Suspended Rectangular Water Walls on Explosion Shock Waves
文章编号:
5867
作者:
张波涛岳亚军姜林
①中国兵器工业集团江山重工研究院有限公司(湖北襄阳,441100)
②南京理工大学机械工程学院(江苏南京,210094)
Author(s):
ZHANG Botao YUE Yajun JIANG Lin
①Jiangshan Heavy Industry Research Institute Co., Ltd, China North Industries Group (Hubei Xiangyang, 441100)
②School of Mechanical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
悬挂式矩形水墙爆炸冲击波水墙厚度削减效果
Keywords:
suspended rectangular water wall explosion shock wave thickness of water wall reduction effect
分类号:
O383
DOI:
10.3969/j.issn.1001-8352.2024.02.006
文献标志码:
A
摘要:
为探究开放空间中水对爆炸冲击波的削减效果,基于水平激波管搭建了冲击波与悬挂式矩形水墙相互作用的实验平台,在水墙近场位置开展了8组实验。利用高速纹影测试系统记录冲击波与水墙的相互作用过程,并研究水墙厚度对水墙破碎效果以及运动速度的影响。利用压力测试系统记录水墙后方的压力变化,并结合高速纹影测试结果进行分析。结果表明:水墙后方的压力变化与冲击波的反射、透射以及绕射现象无关,主要取决于水墙产生的冲击作用;动量提取为悬挂式矩形水墙的主要减爆机制;水墙对冲击波峰值压力具有明显的削减效果,且随着水墙厚度的减小,对峰值压力的削减效果逐渐增加;水墙对峰值冲量的削减效果并不明显。
Abstract:
To investigate the reduction effect of water on explosion shock waves in open spaces, an experimental platform was constructed based on a horizontal shock tube for the interaction between shock waves and suspended rectangular water walls. Eight sets of experiments were conducted at the near-field position of the water wall. The process of interaction between shock waves and water walls was recorded using a high-speed schlieren testing system, and the influence of water wall thickness on wall fragmentation and velocity was investigated. A pressure testing system was used to record the pressure changes behind the water wall, and the results were analyzed in conjunction with the highspeed schlieren imaging data. The results show that the pressure changes behind the water wall are not related to the reflection, transmission, and diffraction phenomena of shock waves, but mainly depend on the impact effect generated by the water wall. Momentum extraction is the main explosion reduction mechanism for suspended rectangular water walls. The water wall has a significant reduction effect on the peak pressure of the shock wave, and as the thickness of the water wall decreases, the reduction effect on the peak pressure gradually increases. However, the reduction effect on the peak impulse is not significant.

参考文献/References:

[1]宁建国, 王成, 马天宝. 爆炸与冲击动力学[M]. 北京: 国防工业出版社, 2010.
NING J G, WANG C, MA T B. Explosion and Shock Dynamics [M]. Beijing: National Defense Industry Press, 2010.
[2]邵先锋, 赵捍东, 朱福林, 等. 爆炸冲击波作用于便携式防爆墙的绕射规律[J]. 爆破器材, 2017, 46(6): 6-10, 16.
SHAO X F, ZHAO H D, ZHU F L, et al. Diffraction laws of explosion shock waves acting on portable explosion-proof walls [J]. Explosive Materials, 2017, 46(6): 6-10, 16.
[3]崔小杰, 张孙嘉, 张国伟. 基于AUTODYN的复合防护结构数值模拟[J]. 爆破器材, 2019, 48(1): 52-57.
CUI X J, ZHANG S J, ZHANG G W. Numerical simulation of composite protective structure based on AUTODYN [J]. Explosive Materials, 2019, 48(6): 52-57.
[4]ZAKRAJSEK A J, MIKLASZEWSKI E J, GUILDENBECHER D R, et al. Experimental analysis of blast mitigation associated with water sheets [J]. AIP Conference Proceedings, 2012, 1426(1): 92-95.
[5]SON S F, ZAKRAJSEK A J, MIKLASZEWSKI E J, et al. Experimental investigation of blast mitigation for target protection [M]//Blast mitigation: experimental and numerical studies. New York: Springer, 2014: 1-19.
[6]叶经方, 董刚, 解立峰. 管道内水雾对冲击波衰减作用的实验研究[J]. 爆破器材, 2006, 35(5): 1-4.
YE J F, DONG G, XIE L F. Experimental investigation of shock wave decay by water mist in duct [J]. Explosive Materials, 2006, 35(5): 1-4.
[7]WILLAUER H D, ANANTH R, FARLEY J P, et al. Mitigation of TNT and Destex explosion effects using water mist [J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 1068-1073.
[8]陈鹏宇, 侯海量, 刘贵兵, 等. 水雾对舱内装药爆炸载荷的耗散效能试验研究[J]. 兵工学报, 2018, 39(5): 927-933.
CHEN P Y, HOU H L, LIU G B, et al. Experimental investigation on mitigating effect of water mist on the explosive shock wave inside cabin [J]. Acta Armamentarii, 2018, 39(5): 927-933.
[9]胡翔. 细水雾对冲击波的削弱作用研究[D]. 武汉: 武汉理工大学, 2018.
HU X. Research on the mitigation of shock wave using fine water mist [D]. Wuhan: Wuhan University of Technology, 2018.
[10]张国栋, 侯海量, 刘贵兵, 等. 舰船舱室水雾抑爆技术研究进展[J]. 舰船科学技术, 2020, 42(2): 1-11.
ZHANG G D, HOU H L, LIU G B, et al. Research progress of water mist explosion suppression technology in warship compartment [J]. Ship Science and Technology, 2020, 42(2): 1-11.
[11]李钰阳. 通道内水幕帘减弱冲击波强度问题的数值研究[D]. 哈尔滨: 哈尔滨工程大学, 2014.
LI Y Y. Numerical study of water curtain decreasing the intensity of shock wave in a channel [D]. Harbin: Harbin Engineering University, 2014.
[12]胡洋, 李士军, 李奇. 水幕衰减爆炸冲击波数值研究[J]. 舰船科学技术, 2020, 42(4): 61-64, 80.
HU Y, LI S J, LI Q. Attenuation of shock wave passing through water curtain [J]. Ship Science and Technology, 2020, 42(4): 61-64, 80.
[13]ZHANG L, CHEN L, FANG Q, et al. Mitigation of blast loadings on structures by an anti-blast plastic water wall [J]. Journal of Central South University, 2016, 23(2): 461-469.
[14]CHEN L, ZHANG L, FANG Q, et al. Performance based investigation on the construction of anti-blast water wall [J]. International Journal of Impact Engineering, 2015, 81: 17-33.
[15]BORNSTEIN H, PHILLPS P, ANDERSON C. Evaluation of the blast mitigating effects of fluid containers [J]. International Journal of Impact Engineering, 2015, 75: 222-228.
[16]BORNSTEIN H, RYAN S, MOURITZ A P. Blast mitigation with fluid containers: effect of mitigant type [J]. International Journal of Impact Engineering, 2018, 113: 106-117.
[17]ZHOU X Q, HAO H. Prediction of airblast loads on structures behind a protective barrier [J]. International Journal of Impact Engineering, 2008, 35(5): 363-375.
[18]徐启明. 低马赫数激波与燃料相互作用实验研究[D]. 南京: 南京理工大学, 2020.
XU Q M. Experimental study on the interaction of shock wave and fuel [D]. Nanjing: Nanjing University of Science and Technology, 2020.
[19]RANJAN D, OAKLEY J, BONAZZA R. Shock-bubble interactions [J]. Annual Review of Fluid Mechanics, 2011, 43(1): 117-140.
[20]TAYLOR G I. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I [J]. Proceedings of the Royal Society of London A, 1950, 201(1065): 192-196.

相似文献/References:

[1]王启睿,张晓忠,孔福利,等.坑道中木格栅消波器的消波效应试验研究[J].爆破器材,2011,40(01):1.
 WANG Qirui,ZHANG Xiaozhong,KONG Fuli,et al.Test Research of Shockwave Attenuation Effect about Wooden Lattice Machine in Tunnel[J].EXPLOSIVE MATERIALS,2011,40(02):1.
[2]张朋军,何洋扬,赵红宇,等.大当量炸药齐爆远区安全性分析[J].爆破器材,2009,38(02):32.
 ZHANG Pengjun,HE Yangyang,ZHAO Hongyu,et al.Far-area Blasting Safety Analysis of Big Amount Dynamite[J].EXPLOSIVE MATERIALS,2009,38(02):32.
[3]成凤生,宋浦,顾晓辉,等.TNT装药爆炸波在刚性平面上方传播反射的数值研究[J].爆破器材,2011,40(04):1.
 CHENG Fengsheng,SONG Pu,GU Xiaohui,et al.Numerical Investigation into the Propagation and Reflection of TNT Blast Wave above Rigid Plane[J].EXPLOSIVE MATERIALS,2011,40(02):1.
[4]于文华①②,张亚栋①.爆炸冲击波在坑道内传播规律研究[J].爆破器材,2013,42(03):1.[doi:10.3969/j.issn.1001-8352.2013.03.001]
 YU Wenhua,ZHANG Yadong.Study on Propagation Laws of Explosion Shock Wave in Tunnels[J].EXPLOSIVE MATERIALS,2013,42(02):1.[doi:10.3969/j.issn.1001-8352.2013.03.001]
[5]穆朝民①,任辉启②,李永池①,等.爆炸冲击波在复杂坑道内传播规律的数值研究[J].爆破器材,2008,37(05):1.
 Mu Chaomin,Ren Huiqi,Li Yongchi,et al.Numerical Investigation on Blast Shock Wave Propagation in the Complex Tunnel[J].EXPLOSIVE MATERIALS,2008,37(02):1.
[6]邵先锋①,赵捍东①,朱福林②,等.爆炸冲击波作用于便携式防爆墙的绕射规律[J].爆破器材,2017,46(06):6.[doi:10.3969/j.issn.1001-8352.2017.06.002]
 SHAO Xianfeng,ZHAO Handong,ZHU Fulin,et al.Diffraction Laws of Explosion Shock Waves Acting on Portable Explosion-proof Walls[J].EXPLOSIVE MATERIALS,2017,46(02):6.[doi:10.3969/j.issn.1001-8352.2017.06.002]
[7]崔小杰①,张孙嘉②,张国伟①.基于AUTODYN的复合防护结构数值模拟[J].爆破器材,2019,48(01):52.[doi:10.3969/j.issn.1001-8352.2019.01.010]
 CUI Xiaojie,ZHANG Sunjia,ZHANG Guowei.Numerical Simulation of Composite Protective Structure Based on AUTODYN[J].EXPLOSIVE MATERIALS,2019,48(02):52.[doi:10.3969/j.issn.1001-8352.2019.01.010]
[8]张玉磊①,袁建飞①,蒋海燕①,等.TNT近地爆炸三波点高度预测及验证[J].爆破器材,2020,49(01):29.[doi:10.3969/j.issn.1001-8352.2020.01.006]
 ZHANG Yulei,YUAN Jianfei,JIANG Haiyan,et al.Prediction and Verification of Triple Point Height of Near Ground TNT Explosion[J].EXPLOSIVE MATERIALS,2020,49(02):29.[doi:10.3969/j.issn.1001-8352.2020.01.006]

备注/Memo

备注/Memo:
收稿日期:2023-07-12
第一作者:张波涛(1977— ),男,研究员,主要从事爆炸力学和冲击动力学相关的研究。E-mail:zbt1022023@163.com
通信作者:姜林(1990— ),男,博士,副教授,主要从事铝热剂燃烧和爆炸力学相关的研究。E-mail:ljiang@njust.edu.cn
更新日期/Last Update: 2024-04-02