[2]FENG D L, LIU M B, LI H Q, et al. Smoothed particle hydrodynamics modeling of linear shaped charge with jet formation and penetration effects [J]. Computers & Fluids, 2013, 86: 77-85.
[3]王峰, 李必红, 王喜, 等. 药型罩锥角对线性聚能装药切割性能的影响[J]. 火工品, 2019(3): 22-25.
WANG F, LI B H, WANG X, et al. Effect of the cone angle of the liner on the cutting performance of linear shaped charge [J]. Initiators & Pyrotechnics, 2019(3): 22-25.
[4]王克波, 郑宇. 线性聚能装药结构的数值仿真优化[J]. 爆破, 2012, 29(2): 99-103.
WANG K B, ZHENG Y. Numerical simulation and optimization of the liner shaped charging struction [J]. Blasting, 2012, 29(2): 99-103.
[5]崔云航, 李裕春, 吴腾芳, 等.线型聚能装药数值模拟与优化设计[J]. 爆破, 2005, 22(3): 26-29.
CUI Y H, LI Y C, WU T F, et al. Numerical simulation and optimization design of linear shaped charge [J]. Blasting, 2005, 22(3): 26-29.
[6]陈沛. 膨化硝铵炸药线性聚能装药切割深度的影响因素研究[D]. 武汉: 武汉科技大学, 2019.
CHEN P. The study on the influencing factors of penetration depth of expanded AN explosive linear charge [D]. Wuhan: Wuhan University of Science and Technology, 2019.
[7]陈宁, 段卫东, 陈沛, 等. 线性聚能装药侵彻深度的影响因素[J]. 工程爆破, 2021, 27(4):100-106.
CHEN N, DUAN W D, CHEN P, et al. Influence factors of penetration depth of linear shaped charge [J]. Engineering Blasting, 2021, 27(4): 100-106.
[8]徐文龙, 王成, 徐斌, 等. 新型聚能装药爆炸成型杆式射流数值模拟及试验研究[J]. 北京理工大学学报, 2017, 37(6): 579-583, 589.
XU W L, WANG C, XU B, et al. Numerical simulation and experimental investigation on new type jetting projectile charge [J]. Transactions of Beijing Institute of Technology, 2017, 37(6): 579-583,589.
[9]CHENG X, HUANG G Y, LIU C M, et al. Design of a novel linear shaped charge and factors influencing its penetration performance [J]. Applied Sciences, 2018, 8(10): 1863.
[10]BOHANEK V, DOBRILOVICM, SKRLEC V. The efficiency of linear shaped charges [J]. Tehnicki Vjesnik, 2014, 21(3): 525-531.
[11]张斐, 周春桂, 张春辉, 等. 超聚能射流成型及侵彻混凝土的数值模拟研究[J]. 火工品, 2018(5): 16-20.
ZHANG F, ZHOU C G, ZHANG C H, et al. Numerical simulation of hypercumulation jet formation and penetration into concrete [J]. Initiators & Pyrotechnics, 2018(5): 16-20.
[12]HOLMQUIST T J, JOHNSON G R. A computational constitutive model for glass subjected to large strains, high strain rates and high pressures [J]. Journal of Applied Mechanics, 2011, 78(5): 051003.