[1]袁玉红①②,李军福③,周彬①,等.半导体桥火工品的防静电与防射频设计[J].爆破器材,2024,53(01):30-35.[doi:10.3969/j.issn.1001-8352.2024.01.005]
 YUAN Yuhong,LI Junfu,ZHOU Bin,et al.Anti-Static and Anti-RF Design of the Semiconductor Bridge Initiator[J].EXPLOSIVE MATERIALS,2024,53(01):30-35.[doi:10.3969/j.issn.1001-8352.2024.01.005]
点击复制

半导体桥火工品的防静电与防射频设计()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年01
页码:
30-35
栏目:
爆炸材料
出版日期:
2024-01-19

文章信息/Info

Title:
Anti-Static and Anti-RF Design of the Semiconductor Bridge Initiator
文章编号:
5842
作者:
袁玉红①②李军福周彬黄寅生
①南京理工大学化学与化工学院(江苏南京,210094)
②安徽红星机电科技股份有限公司(安徽合肥,231135)
③南京军事代表局驻蚌埠地区军事代表室(安徽蚌埠,233000)
Author(s):
YUAN Yuhong①② LI Junfu ZHOU Bin HUANG Yinsheng
①School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②Anhui Hongxing Electrical Polytron Technologies Co., Ltd. (Anhui Hefei, 231135)
③Military Representative Office in Bengbu Region, Nanjing Military Representative Bureau (Anhui Bengbu, 233000)
关键词:
火工品电磁防护集成半导体桥瞬态电压抑制二极管射频加固器件负温度系数热敏电阻
Keywords:
initiator electromagnetic protection integrated semiconductor bridge transient voltage suppression diode RF reinforced device negative temperature coefficient thermistor
分类号:
TJ45
DOI:
10.3969/j.issn.1001-8352.2024.01.005
文献标志码:
A
摘要:
为提高半导体桥(SCB)火工品的防静电与防射频的双防能力,将静电加固器件瞬态电压抑制(TVS)二极管和射频加固器件负温度系数(NTC)热敏电阻同时集成入SCB火工品的结构中,并研究了上述组合器件对SCB火工品发火性能和抗电磁性能的影响规律。结果表明:集成防护器件后,SCB火工品的安全电流从1.2 A升至1.5 A;抗静电性能满足500 pF/500 Ω/25 kV条件下不发火;在22 μF/16 V的电容发火条件下,集成SCB火工品的平均爆发时间较SCB火工品增加了1.77 μs。因此,该组合型防护器件可以在不改变SCB发火性能的基础上有效提高SCB的抗静电和抗射频的能力。
Abstract:
In order to improve the anti-static and anti-RF capability of semiconductor bridge (SCB), transient voltage suppression (TVS) diodes (electrostatic reinforcement device) and negative temperature coefficient (NTC) thermistors (RF reinforced device) were integrated into the SCB initiator. The influence of these combined devices on the ignition performance and electromagnetic resistance of the integrated SCB was studied. The results show that, after integrating protective devices, the safety current of SCB increases from 1.2 A to 1.5 A, and the anti-static performance meets the requirement of no ignition under 500 pF/500 Ω/25 kV conditions. Under the condition of 22 μF/16 V, the average explosion time of integrated SCB increases by 1.77 μs compared to that of SCB. Therefore, this combined protective device can effectively improve the antistatic and antiRF capabilities of SCB without changing its ignition performance.

参考文献/References:

[1]BICKES R W, MCCAMBELL C B. Semiconductor bridge (SCB) research and development: SAND 1991-0310C[R]. Albuquerque, NM, US: Sandia Nalional Laboratories, 1991.
[2]何立萍. 战场电磁环境及其对导弹武器装备的威胁[J]. 航天电子对抗, 2009, 25(1): 1-3.
HE L P. Electromagnetic environment and its threat to missile weapon equipment in the battlefield [J]. Aerospace Electronic Warfare, 2009, 25(1): 1-3.
[3]KING T L, TARBELL W W. Pin-to-pin electrostatic discharge protection for semiconductor bridges: SAND 2002-2213 [R]. Albuquerque, NM, US: Sandia Nalional Laboratories, 2002.
[4]MONK D B, WOODBURY M B, HANSEN D D. Inflator initiator with zener diode electrostatic discharge protector: EP0779492A2 [P]. 1997-06-18.
[5]杜培康, 谭明, 李勇, 等. 压敏电阻对半导体桥火工品电爆性能的影响 [J]. 含能材料, 2015, 23(8): 781-786.
DU P K, TAN M, LI Y, et al. Electro-explosive performances of SCB igniter with varistor [J]. Chinese Journal of Energetic Materials, 2015, 23(8): 781-786.
[6]左成林, 周彬, 杜伟强. TVS-极管用于半导体桥静电安全性研究 [J]. 爆破器材, 2016, 45(3): 62-64.
ZOU C L, ZHOU B, DU W Q. Electrostatic safety of semiconductor bridge with external TVS diodes [J]. Explosive Materials, 2016, 45(3): 62-64.
[7]任钢. 半导体桥火工品电磁兼容技术研究 [D].南京: 南京理工大学, 2012.
REN G. Research on the electromagnetism compatible technology of semiconductor bridge initiators [D]. Nanjing: Nanjing University of Science and Technology, 2012.
[8]王可暄, 白颖伟, 任炜, 等. 电热火工品连续电磁波环境下响应规律[J]. 含能材料, 2012, 20(5): 610-613.
WANG K X, BAI Y W, REN W, et al. Response rule of hot-wire EED in continuous electromagnetic environment [J]. Chinese Journal of Energetic Materials, 2012, 20(5): 610-613.
[9]李欣, 周智, 李鹏飞, 等. SCB点火具电磁加固技术研究[J]. 火工品, 2020(3): 5-8.
LI X, ZHOU Z, LI P F, et al. The research of electromagnetic hardness technology in SCB igniter [J]. Initiators and Pyrotechnics, 2020(3): 5-8.
[10]任炜, 白颖伟, 褚恩义, 等. 铁氧体材料在火工品电磁波环境适应性设计中的应用 [J]. 兵工学报, 2014, 35(9): 1375-1380.
REN W, BAI Y W, CHU E Y, et al. Application of ferrite material in hot-wire EED for improving its adaptability to electromagnetic environment [J]. Acta Armamentarii, 2014, 35(9): 1375-1380.
[11]陈飞. SCB火工品静电、射频损伤机理及其加固技术的研究 [D]. 南京: 南京理工大学, 2012.
CHEN F. Research on the damage mechanism and reinforcement technology of electrostatic and RF on SCB explosive devices [D]. Nanjing: Nanjing University of Science and Technology, 2012.
[12]中国兵器工业集团公司. 火工品试验方法: 第13部分 射频感度试验: GJB 5309.13—2004 [S]. 2004.
China North Industries Group Co., Ltd. Test methods of initiating explosive devices: Part 13 radio-frequency sensitivity test: GJB 5309.13—2004 [S]. 2004.
[13]中国兵器工业集团公司. 火工品试验方法: 第11部分 1A 1W 5 min不发火试验: GJB 5309.11—2004 [S]. 2004.
China North Industries Group Co., Ltd. Test methods of initiating explosive devices: Part 11 1A 1W 5 min no-fire test: GJB 5309.11—2004[S]. 2004.
[14]中国兵器工业集团公司. 火工品试验方法: 第14部分 静电放电试验: GJB 5309.14—2004 [S]. 2004.
China North Industries Group Co., Ltd. Test methods of initiating explosive devices: Part 14 electrostatic discharge test: GJB 5309.14—2004 [S]. 2004.
[15]Department of Defense. Fuze, ignition safety devices and other related components, environmental and performance tests for: MIL-STD-331D [S]. NPFC, US, 2009.

相似文献/References:

[1]张文超,张伟,徐振相,等.半导体桥的研究进展与发展趋势[J].爆破器材,2009,38(02):21.
 ZHANG Wenchao,ZHANG Wei,XU Zhenxiang,et al.Progress and Development on Semiconductor Bridge Initiator[J].EXPLOSIVE MATERIALS,2009,38(01):21.
[2]赵团,姚洪志,纪向飞,等.火工品高频段射频阻抗测试技术[J].爆破器材,2016,45(04):61.[doi:10.3969/j.issn.1001-8352.2016.04.013]
 ZHAO Tuan,YAO Hongzhi,JI Xiangfei,et al.Test Technique of RF Impedance of EED in High Frequency[J].EXPLOSIVE MATERIALS,2016,45(01):61.[doi:10.3969/j.issn.1001-8352.2016.04.013]
[3]董军①②,杜茂华①,王晓峰②,等.3D打印技术在火工品和炸药中的应用研究[J].爆破器材,2021,50(04):1.[doi:10.3969/j.issn.1001-8352.2021.04.001]
 DONG Jun,DU Maohua,WANG Xiaofeng,et al.Application of 3D Printing Technology in Pyrotechnics and Explosives[J].EXPLOSIVE MATERIALS,2021,50(01):1.[doi:10.3969/j.issn.1001-8352.2021.04.001]
[4]丁跃伟,赵洪海,程涛,等.引爆装置长期储存失效研究[J].爆破器材,2023,52(01):30.[doi:10.3969/j.issn.1001-8352.2023.01.005]
 DING Yuewei,ZHAO Honghai,CHENG Tao,et al.Study on Failure of an Initiating Device in Long-Time Storage[J].EXPLOSIVE MATERIALS,2023,52(01):30.[doi:10.3969/j.issn.1001-8352.2023.01.005]
[5]袁玉红①②,张胜③,韩保良④,等.基于PSpice软件的半导体桥换能元电爆特性的模拟仿真[J].爆破器材,2023,52(06):22.[doi:10.3969/j.issn.1001-8352.2023.06.004]
 YUAN Yuhong,ZHANG Sheng,HAN Baoliang,et al.Simulation of the Electro-Explosive Characteristics of Semiconductor Bridge Exchange Elements Based on PSpice Software[J].EXPLOSIVE MATERIALS,2023,52(01):22.[doi:10.3969/j.issn.1001-8352.2023.06.004]

备注/Memo

备注/Memo:
收稿日期:2023-05-17
第一作者:袁玉红(1985—),男,博士研究生,高级工程师,主要从事钝感起爆器材的研究设计。E-mail:28891855@qq.com
通信作者:周彬(1971—),女,副研究员,主要从事钝感电火工品的设计研究。E-mail: zhoubinnust@126.com
更新日期/Last Update: 2024-01-12