[1]杨耀勇①②,汪泉①②,李瑞①②③,等.纳米铝热剂与猛炸药制备起爆药的表征及性能研究[J].爆破器材,2024,53(01):23-29,35.[doi:10.3969/j.issn.1001-8352.2024.01.004]
 YANG Yaoyong,WANG Quan,LI Rui,et al.Characterization and Performance Study on Primary Explosives Prepared from Nano Aluminothermal Agents and High Explosives[J].EXPLOSIVE MATERIALS,2024,53(01):23-29,35.[doi:10.3969/j.issn.1001-8352.2024.01.004]
点击复制

纳米铝热剂与猛炸药制备起爆药的表征及性能研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
53
期数:
2024年01
页码:
23-29,35
栏目:
爆炸材料
出版日期:
2024-01-19

文章信息/Info

Title:
Characterization and Performance Study on Primary Explosives Prepared from Nano Aluminothermal Agents and High Explosives
文章编号:
5836
作者:
杨耀勇①②汪泉①②李瑞①②③徐小猛①②
①安徽理工大学化工与爆破学院(安徽淮南,232001)
②安徽理工大学安徽省爆破器材与技术工程实验室(安徽淮南,232001)
③安徽理工大学煤炭安全精准开采国家地方联合工程研究中心(安徽淮南,232001)
Author(s):
YANG Yaoyong①② WANG Quan①② LI Rui①②③ XU Xiaomeng①②
①School of Chemical and Blasting Engineering, Anhui University of Science and Technology (Anhui Huainan, 232001)
②Laboratory of Explosive Materials and Technical Engineering of Anhui Province, Anhui University of Science and Technology (Anhui Huainan, 232001)
③Joint National-Local Engineering Research Centre for Safe and Precise Coal Mining, Anhui University of Science and Technology (Anhui Huainan, 232001)
关键词:
Al/Bi2O3-PETN Al/Bi2O3-RDX物理混合法起爆药
Keywords:
Al/Bi2O3-PETN Al/Bi2O3-RDX physical mixing method primary explosive
分类号:
TQ563+.9
DOI:
10.3969/j.issn.1001-8352.2024.01.004
文献标志码:
A
摘要:
为了探究纳米铝热剂-猛炸药混合物代替起爆药的可能性,以纳米铝、纳米Bi2O3、工业级太安(PETN)和黑索今(RDX)为原料,通过物理混合法制备了Al/Bi2O3-PETN和Al/Bi2O3-RDX。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)、能谱仪(EDS)、热分析仪、敞开环境燃烧实验等方法对制备的Al/Bi2O3-PETN、Al/Bi2O3-RDX 2种样品进行表征和性能测试。结果表明:物理混合法制备的2种样品的形貌规整,Al/Bi2O3对PETN和RDX 2种猛炸药的包覆效果较好,且反应过程中生成大量的气态产物。Al/Bi2O3-PETN的热稳定性比Al/Bi2O3-RDX低,且静电感度均低于叠氮化铅和斯蒂芬酸铅。分别取2种样品81 mg装填于8#雷管中,通过铅板穿孔实验发现,2组样品均可使5 mm厚的铅板穿孔。根据5 mm的铅板穿孔直径判断,Al/Bi2O3RDX起爆能力优于Al/Bi2O3-PETN。
Abstract:
In order to explore the possibility of replacing primary explosives with mixed materials of nano aluminothermal agents and high explosives, Al/Bi2O3-PETN and Al/Bi2O3-RDX were prepared by physical mixing using nano aluminum powder, nano Bi2O3, industrial grade PETN, and RDX as raw materials. The properties of the two prepared samples were characterized and tested by methods such as X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), thermal analysis, and open environment combustion experiments. The results indicate that the morphology of the two samples prepared by physical mixing method is regular. Al/Bi2O3 has a good coating effect on two types of explosive materials, PETN and RDX, and a large amount of gaseous products are generated during the reaction process. The thermal stability of Al/Bi2O3-PETN is lower than that of Al/Bi2O3-RDX, and the electrostatic sensitivity is lower than that of lead azide and lead stephenate. Two types of mixed materials, 81 mg, were respectively loaded into 8# detonators for lead plate perforation experiments. It was found that both types of samples can cause perforation of 5 mm-thick lead plates. Based on the perforation diameter of the 5 mm-thick lead plate, the detonation ability of Al/Bi2O3-RDX is superior to that of Al/Bi2O3-PETN.

参考文献/References:

[1]HUYNH M H V, HISKEY M A, MEYER T J, et al. Green primaries: environmentally friendly energetic complexes [J]. PNAS, 2006, 103(14): 5409-5412.
[2]POLIS M, STOLARCZYK A, GLOSZ K, et al. Quo vadis, nanothermite A review of recent progress [J]. Materials, 2022, 15(9): 3215.
[3]KABRA S, GHARDE S, GORE P M, et al. Recent trends in nanothermites: fabrication, characteristics and applications [J]. Nano Express, 2020, 1(3): 032001.
[4]KHASAINOV B, COMET M, VEYSSIERE B, et al. Comparison of performance of fast-reacting nanothermites and primary explosives [J]. Propellants, Explosives, Pyrotechnics, 2017, 42(7): 754-772.
[5]WU C W, SULLIVAN K, CHOWDHURY S, et al. Encapsulation of perchlorate salts within metal oxides for application as nanoenergetic oxidizers [J]. Advanced Functional Materials, 2012, 22(1): 78-85.
[6]ROSSI C, ZHANG K L, ESTEVE D, et al. Nanoenergetic materials for MEMS: a review [J]. Journal of Microelectromechanical Systems, 2007, 16(4): 919-931.
[7]DREIZIN E L. Metal-based reactive nanomaterials [J]. Progress in Energy and Combustion Science, 2009, 35(2): 141-167.
[8]JIAN G Q, CHOWDHURY S, SULLIVAN K, et al. Nanothermite reactions: Is gas phase oxygen generation from the oxygen carrier an essential prerequisite to ignition [J]. Combustion and Flame, 2013, 160(2): 432-437.
[9]CHEN M J, ZHANG F S, ZHU J X. Detoxification of cathode ray tube glass by self-propagating process [J]. Journal of Hazardous Materials, 2009, 165(1/2/3): 980-986.
[10]WANG Y, ZHU J X. Preparation of lead oxide nanoparticles from cathode-ray tube funnel glass by self-propagating method [J]. Journal of Hazardous Materials, 2012, 215/216: 90-97.
[11]JIAN G Q, LIU L, ZACHARIAH M R. Facile aerosol route to hollow CuO spheres and its superior performance as an oxidizer in nanoenergetic gas generators [J]. Advanced Functional Materials, 2013, 23(10): 1341-1346.
[12]YANG Y, WANG P P, ZHANG Z C, et al. Nanowire membrane-based nanothermite: towards processable and tunable interfacial diffusion for solid state reactions [J]. Scientific Reports, 2013, 3: 1694.
[13]ZHOU X, XU D G, ZHANG Q B, et al. Facile green in situ synthesis of Mg/CuO core/shell nanoenergetic arrays with a superior heat-release property and longterm storage stability [J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7641-7646.
[14]SEVERAC F, ALPHONSE P, ESTEVE A, et al. High-energy Al/CuO nanocomposites obtained by DNA-directed assembly [J]. Advanced Functional Materials, 2012, 22(2): 323-329.
[15]PATEL V K, BHATTACHARYA S. High-performance nanothermite composites based on aloeveradirected CuO nanorods [J]. ACS Applied Materials & Interfaces, 2013, 5(24): 13364-13374.
[16]JIAN G Q, FENG J Y, JACOB R J, et al. Super-reactive nanoenergetic gas generators based on periodate salts [J]. Angewandte Chemie (Internatioal Edition), 2013, 52(37): 9743-9746.
[17]YAN S, JIAN G Q, ZACHARIAH M R. Electrospun nanofiber-based thermite textiles and their reactive properties [J]. ACS Applied Materials & Interfaces, 2012, 4(12): 6432-6435.
[18]ZHANG W C, YIN B Q, SHEN R Q, et al. Significantly enhanced energy output from 3D ordered macroporous structured Fe2O3/Al nanothermite film [J]. ACS Applied Materials & Interfaces, 2013, 5(2): 239-242.
[19]FENG J Y, JIAN G Q, LIU Q, et al. Passivated iodine pentoxide oxidizer for potential biocidal nanoenergetic applications [J]. ACS Applied Materials & Interfaces, 2013, 5(18): 8875-8880.
[20]杨光成, 谯志强. 亚稳态分子间复合物面临的挑战[J]. 含能材料, 2014, 22(3): 279-280.
[21]ROSSI C, EST-VE A, VASHISHTA P. Nanoscale energetic materials [J]. Journal of Physics and Chemistry of Solids, 2010, 71(2): 57-58.
[22]ROSSI C. Two decades of research on nano-energetic materials [J]. Propellants, Explosives, Pyrotechnics, 2014, 39(3): 323-327.
[23]SULLIVAN K T, PIEKIEL N W, CHOWDHURY S, et al. Ignition and combustion characteristics of nanoscale Al/AgIO3: a potential energetic biocidal system [J]. Combustion Science and Technology, 2010, 183(3): 285-302.
[24]QIAO Z Q, SHEN J P, WANG J, et al. Fast deflagration to detonation transition of energetic material based on a quasicore/shell structured nanothermite composite [J]. Composites Science and Technology, 2015, 107: 113-119.
[25]谯志强, 陈瑾, 黄兵, 等. 一种安全环保型起爆药替代物及制备方法: CN102603442B [P]. 2014-08-13.
[26]THIRUVENGADATHAN R, BEZMELNITSYN A, APPERSON S, et al. Combustion characteristics of novel hybrid nanoenergetic formulations [J]. Combustion and Flame, 2011, 158(5): 964-978.
[27]COMET M, MARTIN C, KLAUM-NZER M, et al. Energetic nanocomposites for detonation initiation in high explosives without primary explosives [J]. Applied Physics Letters, 2015, 107(24): 243108.
[28]高坤, 李国平, 罗运军, 等. 热处理对Al/Fe2O3纳米铝热剂性能的影响[J]. 火炸药学报, 2012, 35(6): 19-22.
GAO K, LI G P, LUO Y J, et al. Effect of thermal process on the properties of Al/Fe2O3 nano-thermites [J]. Chinese Journal of Explosives & Propellants, 2012, 35(6): 19-22.
[29]SHENDE R, SUBRAMANMIAN S, HASAN S, et al. Nanoenergetic composites of CuO nanorods, nanowires, and Al-nanoparticles [J]. Propellants, Explosives, Pyrotechnics, 2008, 33 (2): 122-130.
[30]GRANIER J J, PANTOYA M L. Laser ignition of nanocomposite thermites [J]. Combustion and Flame, 2004, 138(4): 373-383.
[31]黄浩, 焦清介, 李俊龙, 等. 铝粉粒度对RDX热分解动力学的影响[J]. 火炸药学报, 2011, 34(6): 48-52, 73.
HUANG H, JIAO Q J, LI J L, et al.Effect of aluminum particle size on the thermal decomposition of RDX [J]. Chinese Journal of Explosives & Propellants, 2011, 34(6): 48-52, 73.
[32]刘颖, 杨茜, 陈利平, 等. 绝热加速量热仪表征含能材料热感度的探讨[J]. 含能材料, 2011, 19(6): 656-660.?
LIU Y, YANG Q, CHEN L P, et al. Thermal sensitivity of energetic materials characterized by accelerating rate calorimeter (ARC) [J]. Chinese Journal of Energetic Materials, 2011, 19(6): 656-660.?
[33]中国兵器工业集团公司.火工品药剂试验方法: 第27部分? 静电火花感度试验: GJB 5891.27—2006 [S]. 2006.
China North Industries Group Co., Ltd. Test method of loading material for initiating explosive device: Part 27 electrostatic spark sensitivity test: GJB 5891.27—2006 [S]. 2006.
[34]陆明, 赵月兵. RDX与Al混合体系的静电火花感度研究[J]. 兵工学报, 2009, 30(12): 1602-1606.
LU M, ZHAO Y B. Research on electrostatic spark sensitivity of RDX-Al in the process of roller mixing [J]. Acta Armamentarii, 2009, 30(12): 1602-1606.

备注/Memo

备注/Memo:
收稿日期:2023-04-25
基金项目:安徽理工大学校级重点项目(xjzd2020-08);安徽理工大学人才引进基金;安徽省自然科学基金(2208085QA26);煤炭安全精准开采国家地方联合工程研究中心开放基金(EC2021015);安徽省爆破器材与技术工程实验室开放基金(AHBP2022B-04)?
第一作者:杨耀勇(1998—),男,硕士研究生,主要从事纳米铝热剂的研究。E-mail: 2458260953@qq.com
通信作者:李瑞(1987—),男,博士,讲师,主要从事纳米铝热剂的研究。E-mail: lirui_89@126.com
更新日期/Last Update: 2024-01-11