[1]SANTOS P H S, CARIGNANO M A, CAMPANELLA O H. Qualitative study of thixotropy in gelled hydrocarbon fuels [J]. Engineering Letters, 2011, 19(1): 13-19.
[2]CHEN A Q, GUAN X D, LI X M, et al. Preparation and characterization of metalized JP-10 gel propellants with excellent thixotropic performance[J]. Propellants, Explosives, Pyrotechnics, 2017, 42 (9): 1007-1013.
[3]XIU T F, ZHI X M, ZHANG X W, et al. Ignition and combustion performances of high-energy-density jet fuels catalyzed by Pt and Pd nanoparticles[J]. Energy & Fuels, 2018, 32 (2): 2163-2169.
[4]XUE K, CAO J W, PAN L, et al. Review on design, preparation and performance characterization of gelled fuels for advanced propulsion[J]. Frontiers of Chemical Science Engineering, 2021, 16(6): 819-837.
[5]叶纬东, 乔治军, 李嘉颢, 等. 含铝凝胶燃料的流变特性研究[J]. 爆破器材, 2022, 51 (2): 17-25.
YE W D, QIAO Z J, LI J H, et al. Rheological properties of aluminium-containing gel fuel[J]. Explosive Materials, 2022, 51 (2): 17-25.
[6]LIU Y, ZHANG H Z, PAN L, et al. High-energydensity gelled fuels with high stability and shear thinning performance [J]. Chinese Journal of Chemical Engineering, 2022, 43(3): 99-109.
[7]ZHANG X W, PAN L, WANG L, et al. Review on synthesis and properties of high-energy-density liquid fuels: hydrocarbons, nanofluids and energetic ionic liquids[J]. Chemical Engineering Science, 2018, 180: 95-125.
[8]CAO Q L, LIAO W H, WU W T, et al. Combustion characteristics of inorganic kerosene gel droplet with fumed silica as gellant[J]. Experimental Thermal and Fluid Science, 2019, 103: 377-384.
[9]JOHN J, NANDAGOPALAN P, BAEK S W, et al. Rheology of solid-like ethanol fuel for hybrid rockets: effect of type and concentration of gellants [J]. Fuel, 2017, 209: 96-108.
[10]JOHN J, ARDHIANTO K, NANDAGOPALAN P, et al. Thermoreversible gelation and self-assembly behavior of dibenzylidene sorbitol in ternary solvent mixtures[J]. Colloid and Polymer Science, 2019, 297(4): 493-502.
[11]WANG Y, WU X J, YANG W, et al. Aggregate of nanoparticles: rheological and mechanical properties[J]. Nanoscale research letters, 2011, 6(1): 3-6.
[12]ARNOLD R, SANTOS P H S, CAMPANELLA O H, et al. Rheological and thermal behavior of gelled hydrocarbon fuels[J]. Journal of Propulsion & Power, 2011, 27 (1): 151-161.
[13]鄂秀天凤, 张磊, 谢君健, 等. 添加纳米铝的高密度悬浮燃料点火性能[J]. 含能材料, 2018, 26(4): 290-296.
E X T F,ZHANG L,XIE J J,et al. Ignition per formance of high-density suspension fuel of adding Al NPs [J]. Chinese Journal of Energetic Materials, 2018, 26 (4): 290-296.
[14]曹锦文, 潘伦, 张香文, 等. 含纳米铝颗粒的JP-10凝胶燃料理化及流变性能[J]. 含能材料, 2020, 28 (5): 382-390.
CAO J W, PAN L, ZHANG X W,et al. Physicochemical and rheological properties of Al/JP-10 gelled fuel[J]. Chinese Journal of Energetic Materials, 2020, 28 (5): 382-390.
[15]WU X J, WANG Y, YANG W, et al. A rheological study on temperature dependent microstructural changes of fumed silica gels in dodecane[J]. Soft Matter, 2012, 8(40): 10457-10463.
[16]GUO Y, YU W, XU Y Z, et al. Liquidtosolid transition of concentrated suspensions under complex transient shear histories [J]. Physical Review E, 2009, 80 (6): 061404.
[17]郑重. 气相二氧化硅/极性低聚物纳米复合材料的界面调控与流变行为研究[D]. 杭州: 浙江大学, 2016.
ZHENG Z. Adjustable interfacial structure rheology of fumed silica/polar oligomer nanocomposites [D]. Hangzhou: Zhejiang University, 2016.
[18]HASSAN M, ISSAKHOV A, UD K, et al. The effects of zero and high shear rates viscosities on the transportation of heat and mass in boundary layer regions: a non-Newtonian fluid with Carreau model [J]. Journal of Molecular Liquids, 2020, 317: 113991.