[1]何广沂, 张进增, 王树成, 等.隧道聚能水压光面爆破新技术[M]. 北京: 中国铁道出版社, 2018.
[2]杨峰. 药型罩参数对爆炸成型侵彻体影响研究[D]. 北京: 北京理工大学, 2015.
YANG F. Research of liner parameters on the effects of explosively formed projecties [D]. Beijing: Beijing Institute of Technology, 2015.
[3]薛宪彬.对称双线型聚能爆破技术数值模拟研究及应用[J].工程爆破, 2017, 23(6): 26-29, 38.
XUE X B. Numerical simulation analysis and application of symmetric bilinear shaped charge blasting technology[J]. Engineering Blasting, 2017, 23(6): 26-29, 38.
[4]赵建平, 卢伟, 程贝贝, 等. 聚能锥角对线性聚能爆破致裂岩体效果的影响[J]. 工程爆破, 2021, 27(5): 72-79.
ZHAO J P, LU W, CHENG B B, et al. Effect of the shaped cone angle on fracturing rock in the linear shaped charge blasting[J]. Engineering Blasting, 2021, 27(5): 72-79.
[5]王峰, 李必红, 王喜, 等. 药型罩锥角对线性聚能装药切割性能的影响[J]. 火工品, 2019(3): 22-25.
WANG F, LI B H, WANG X, et al. Effect of the cone angle of the liner on the cutting performance of linear shaped charge [J]. Initiators & Pyrotechnics, 2019(3): 22-25.
[6]石连松, 高文学, 陈寿峰. 水下聚能爆破技术研究[J].兵工学报, 2016, 37(增刊2): 122-127.
SHI L S, GAO W X, CHEN S F. Research on underwater blasting technology of shaped charge[J]. Acta armamenterii, 2016, 37(Suppl.2): 122-127.
[7]徐风, 陈智刚, 付建平, 等. 药型罩与炸药间距对聚能装药能量输出的影响[J]. 爆破器材, 2020, 49(3): 43-48.
XU F, CHEN Z G, FU J P, et al. Influence of distance between liner and explosive on energy output of shaped charge [J]. Explosive Materials, 2020, 49(3): 43-48.
[8]杜学良. 罩顶角对聚能切割器切割深度影响的数值模拟[J]. 科技信息, 2012(6): 135-136.
[9]黄庆显, 王金梁, 娄俊豪, 等.坚硬岩石聚能爆破破岩效果数值分析[J]. 煤矿安全, 2013, 44(10): 189-191.
HUANG Q X, WANG J L, LOU J H, et al. Numerical analysis on breaking effect of shaped charge blasting for hard rock [J]. Safety in Coal Mines, 2013, 44(10): 189-191.
[10]赵鑫, 徐永杰, 郑娜娜, 等. 药型罩侵彻性能仿真与优化[J]. 兵器装备工程学报, 2021, 42(10): 65-71.
ZHAO X, XU Y J, ZHENG N N, et al. Simulation and optimization research of penetration performance of liner[J]. Journal of Ordnance Equipment Engineering, 2021, 42(10): 65-71.
[11]宋鹏伟, 杨新安, 李淮, 等. 基于聚能水压光爆技术的周边眼装药结构优化研究[J]. 隧道建设(中英文), 2022, 42(1): 103-112.
SONG P W, YANG X A, LI H, et al. Optimization of charge structure of peripheral blasting holes based on shaped energy water pressure smooth blasting technology[J]. Tunnel Contruction, 2022, 42(1): 103-112.
[12]MUNROE C E. The Manufacture of Explosives [J]. Science, 1896, 4(91): 459-460.
[13]朱飞昊. 聚能爆破煤体损伤及裂纹演化特征研究[D]. 淮南: 安徽理工大学, 2019.
ZHU F H. Study on the characteristics of damage and crack evolution under the shaped change blasting [D]. Huainan: Anhui University of Science and Technology, 2019.
[14]吴波, 王汪洋, 徐世祥, 等. 聚能预裂爆破技术在林家岙隧道中的应用[J]. 工程爆破, 2020, 26(3): 55-62.
WU B, WANG W Y, XU S X, et al. Application of cumulative pre-split blasting technology in Linjiaao tunnel[J]. Engineering Blasting, 2020, 26(3): 55-62.
[15]张旭进, 张昌锁, 曾杰. 基于ANSYS/LS-DYNA的聚能结构两侧空孔合理半径数值模拟[J]. 煤炭技术, 2019, 38(5): 118-120.
ZHANG X J, ZHANG C S, ZENG J. Numerical simulation of reasonable radius of empty holes on both sides of shaped structure based on ANSYS/LSDYNA[J]. Coal Technology, 2019, 38(5): 118-120.
[16]王汪洋. 隧道聚能水压控制爆破岩机理与参数优化研究[D]. 南宁: 广西大学,2019.
WANG W Y. Study on rock breaking mechanism and parameter optimization of cumulative hydraulic controlled blasting in tunnel[D]. Nanning: Guangxi University, 2019.