[1]吉昌泉,贾凡,李斌,等.初始压力和富氧系数对CH4/O2/N2预混气体爆炸特性的影响[J].爆破器材,2023,52(03):16-22.[doi:10.3969/j.issn.1001-8352.2023.03.003]
 JI Changquan,JIA Fan,LI Bin,et al.Effect of Initial Pressure and Oxygen Enrichment Factor on the Explosion Characteristics of CH4/O2/N2 Premixed Gases[J].EXPLOSIVE MATERIALS,2023,52(03):16-22.[doi:10.3969/j.issn.1001-8352.2023.03.003]
点击复制

初始压力和富氧系数对CH4/O2/N2预混气体爆炸特性的影响()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
52
期数:
2023年03
页码:
16-22
栏目:
基础理论
出版日期:
2023-06-06

文章信息/Info

Title:
Effect of Initial Pressure and Oxygen Enrichment Factor on the Explosion Characteristics of CH4/O2/N2 Premixed Gases
文章编号:
5760
作者:
吉昌泉贾凡李斌张丹解立峰
南京理工大学化工学院(江苏南京,210094)
Author(s):
JI Changquan JIA Fan LI Bin ZHANG Dan XIE Lifeng
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
关键词:
初始压力富氧系数预混气体爆炸特性5 L圆柱形爆炸容器
Keywords:
initial pressure oxygen enrichment factor premixed gas explosion characteristics 5 L cylindrical explosive container
分类号:
TQ560.7; X932
DOI:
10.3969/j.issn.1001-8352.2023.03.003
文献标志码:
A
摘要:
为了探究甲烷CH4在富氧和非常压条件下的爆炸危险性,确保CH4气体在不同工况下的安全使用,借助5 L圆柱形爆炸装置,研究了初始压力p0和富氧系数E对CH4/O2/N2爆炸特性的影响。包括最大爆炸压力pmax、最大压力上升速率(dp/dtmax和最大压力到达时间tc等衡量CH4爆炸安全性的指标。结果表明:当E为 0.21、0.25和0.30时,pmaxp0的增加始终线性上升;而当E为 0.35和0.40时,pmaxp0的增加先缓慢线性上升、后快速线性上升;(dp/dtmaxp0的增加分为线性上升和一阶指数快速上升。在E为0.21和0.25时,tcp0的增加而线性增大,因为在燃烧初始阶段CH4活化自由基的销毁速率增加,降低了反应速率和燃速,引起预混气体tc的延长;但随着E的增加,氧气的促进作用与自由基销毁的抑制作用形成新的竞争效应,使得tc先增加、后下降。
Abstract:
In order to investigate the explosion hazards of methane CH4 under oxygen-rich and non-pressure conditions, and ensure the safe use of CH4 gas under different operating conditions, the effects of initial pressure p0?and oxygen enrichment factor E?on the explosion characteristics of CH4/O2/N2 were studied using a 5 L cylindrical explosive device. Indicators such as maximum explosion pressure pmax, maximum pressure rise rate (dp/dt)max, and maximum pressure arrival time tc were used to measure the explosion safety of CH4. The results show that when E?is 0.21, 0.25, and 0.30, pmax?always increases linearly with the increase of p0; When E?is 0.35 and 0.40, pmax first slowly increases linearly with the increase of p0, and then rapidly increases linearly; (dp/dt)max?can be divided into linear increase and first-order exponential rapid increase with the increase of p0. When E?is 0.21 and 0.25, tc linearly increases with the increase of p0, as the destruction rate of CH4 activated radicals increases during the initial combustion stage, reducing the reaction rate and burning rate, leading to an extension of tc of premixed gas. But as E?increases, the promoting effect of oxygen and the inhibiting effect of free radical destruction form a new competitive effect, causing tc to increase first and then decrease.

参考文献/References:

[1]BAUER C G, FOREST T W. Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on S.I. engine performance [J]. International Journal of Hydrogen Energy, 2001, 26(1): 55-70.
[2]DAHOE A E. Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(3): 152-166.
[3]DAHOE A E, ZEVENBERGEN J F, LEMKOWITZ S M, et al. Dust explosions in spherical vessels: the role of flame thickness in the validity of the ‘cube-root law’[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 33-44.
[4]杨勇, 张义华, 蔡律律, 等. 富氧燃烧的工业应用进展分析[J]. 能源与节能, 2021(7): 179-181, 205.
YANG Y, ZHANG Y H, CAI L L, et al. Analysis on industrial application progress of oxygen enriched combustion [J]. Energy and Energy Conservation, 2021(7): 179-181, 205.
[5]NABI M N, HUSTAD J E. Effect of fuel oxygen on engine performance and exhaust emissions including ultrafine particle fueling with dieseloxygenate blends [C]//SAE 2010 Powertrains, Fuels & Lubricants Meeting. San Diego, CA, US, 2010.
[6]CHU J W, YAO C L, QIAO G M. Reducing HC emissions of gasoline engine during cold-start by using a oxygenenriched intake air system [C]//2011 International Conference on Remote Sensing, Environment and Transportation Engineering. Nanjing, 2011: 8422-8425.
[7]GAO Q, LIU C C, JIN Y A, et al. Emission and combustion misfire of engine with oxygen-enriched in dynamic start process [C]//2009 International Conference on Energy and Environment Technology. IEEE, 2009: 117-120.
[8]杜奎林. 浅析富氧燃烧在冶金行业的应用[J]. 冶金与材料, 2018, 38(6): 178-179.
[9]SALZANO E, BASCO A, CAMMAROTA F, et al. Explosions of syngas-CO2 mixtures in oxygen-enriched air [J]. Industrial & Engineering Chemistry Research, 2012, 51(22): 7671-7678.
[10]YEPES H A, AMELL A A. Laminar burning velocity with oxygen-enriched air of syngas produced from biomass gasification [J]. International Journal of Hydrogen Energy, 2013, 38(18): 7519-7527.
[11]郑楚光, 赵永椿, 郭欣. 中国富氧燃烧技术研发进展[J]. 中国电机工程学报, 2014, 34(23): 3856-3863.
ZHENG C G, ZHAO Y C, GUO X. Research and development of oxy-fuel combustion in China[J]. Proceedings of the CSEE, 2014, 34(23): 3856-3863.
[12]VANDERSTRAETEN B, TUERLINCKX D, BERGHMANS J, et al. Experimental study of the pressure and temperature dependence on the upper flammability limit of methane-air mixtures [J]. Journal of Hazardous Materials, 1997, 56(3): 237-246.
[13]李传家, 王伯良, 黄菊, 等. 爆炸形成过程中火焰加速的试验研究[J]. 中国安全科学学报, 2011, 21(10): 76-81.
LI C J, WANG B L, HUANG J, et al. Experimental study on flame acceleration in the forming process of explosion [J]. China Safety Science Journal, 2011, 21(10): 76-81.
[14]蔺伟, 回岩, 王成, 等. 瓦斯体积分数对火焰传播规律影响的实验研究[J]. 北京理工大学学报, 2015, 35(6): 551-555.
LIN W, HUI Y, WANG C, et al. Experimental investigation about the influence of gas concentration on flame propagation [J]. Transactions of Beijing Institute of Technology, 2015, 35(6): 551-555.
[15]徐宗. 小型管道内气体燃烧火焰传播规律研究[D]. 太原: 中北大学, 2011.
XU Z. Research on gas flame propagation in small size pipe [D]. Taiyuan: North University of China, 2011.
[16]郑兴忠, 郑丹. 甲烷浓度和点火能量对瓦斯爆炸火焰长度影响的实验研究[J]. 消防技术与产品信息, 2015(3): 12-15.
[17]李润之. 点火能量与初始压力对瓦斯爆炸特性的影响研究[D]. 青岛: 山东科技大学, 2010.
LI R Z. Study on the influence of ignition energy and initial pressure on the gas explosion characteristics[D]. Qingdao: Shandong University of Science and Technology, 2010.
[18]仇锐来, 张延松, 司荣军, 等. 点火能量对瓦斯爆炸传播影响的实验研究[J]. 矿业安全与环保, 2011, 38(1): 6-9.
QIU R L, ZHANG Y S, SI R J, et al. Experimental study on influence of ignition energy upon gas explosion propagation [J]. Mining Safety & Environmental Protection, 2011, 38(1): 6-9.
[19]WANG F H, CHEN J N, WEN X P, et al. Experimental study on the explosion characteristics of CH4/O2/N2 mixtures with different oxygen enrichment coefficients and ignition positions [J]. ACS Omega, 2020, 5(47): 30495-30501.
[20]王发辉, 陈京宁, 温小萍, 等. 富氧条件下甲烷爆燃火焰传播特性试验研究[J]. 安全与环境学报, 2022, 22(1): 167-173.
WANG F H, CHEN J N, WEN X P, et al. Experimental study on flame propagation characteristics of methane deflagration under the oxygen-enriched condition [J]. Journal of Safety and Environment, 2022, 22(1): 167-173.
[21]王发辉, 孙悦, 温小萍, 等. 富氧条件下不同泄爆面积对CH4燃烧诱导快速相变的影响[J]. 安全与环境学报, 2021, 21(1): 109-116.
WANG F H , SUN Y, WEN X P, et al. Impact of the different venting areas on the combustion induced rapid phase transition (CRPT) by CH4/N2/O2enriched mixture [J]. Journal of Safety and Environment, 2021, 21(1): 109-116.
[22]DI BENEDETTOA A, DI SARLIA V, SALZANOA E, et al. Explosion behavior of CH4/O2/N2/CO2 and H2/O2/N2/CO2 mixtures [J]. International Journal of Hydrogen Energy, 2009, 34: 6970-6978.
[23]DI BENEDETTOA A, CAMMAROTA F, DI SARLIA V, et al. Anomalous behavior during explosions of CH4 in oxygen-enriched air [J]. Combustion & Flame, 2011, 158(11): 2214-2219.
[24]TANG C L, HUANG Z H, JIN C, et al. Explosion characteristics of hydrogen-nitrogen-air mixtures at elevated pressures and temperatures [J]. International Journal of Hydrogen Energy, 2009, 34(1): 554-561.
[25]伯纳德·刘易斯, 京特·冯·埃尔贝. 燃气燃烧与瓦斯爆炸[M]. 王方, 译. 北京: 中国建筑工业出版社, 2007.

相似文献/References:

[1]宋克健,龙源,胡新印,等.装药结构对药孔爆破初始压力及能量利用率的影响[J].爆破器材,2011,40(03):1.
 SONG Kejian,LONG Yuan,HU Xinyin,et al.The Influence of Charge Construction on the Initial Shock Pressure and the Utilization Ratio of Energy[J].EXPLOSIVE MATERIALS,2011,40(03):1.
[2]章文义①,李玉艳②③,潘峰②③,等.丙烷-氧气预混气体的火焰传播及点火特性[J].爆破器材,2019,48(04):27.[doi:10.3969/j.issn.1001-8352.2019.04.005]
 ZHANG Wenyi,LI Yuyan,PAN Feng,et al.Flame Propagation and Ignition Properties of Propane-Oxygen Premixed Gas[J].EXPLOSIVE MATERIALS,2019,48(03):27.[doi:10.3969/j.issn.1001-8352.2019.04.005]
[3]高凯,熊新宇,凤文桢,等.初始温度和压力对乙炔分解爆炸参数影响的实验研究[J].爆破器材,2021,50(02):7.[doi:10.3969/j.issn.1001-8352.2021.02.002]
 GAO Kai,XIONG Xinyu,FENG Wenzhen,et al.Experimental Study on Effect of Initial Temperature and Pressure on Decomposition Explosion Parameters of Acetylene[J].EXPLOSIVE MATERIALS,2021,50(03):7.[doi:10.3969/j.issn.1001-8352.2021.02.002]

备注/Memo

备注/Memo:
收稿日期:2022-09-06
第一作者:吉昌泉(1998-),男,硕士,主要从事气体爆炸方面的研究。E-mail: jichangquan@njust.edu.cn
通信作者:李斌(1984-),男,博士,副研究员,主要从事多相爆轰相关研究。E-mail: libin@njust.edu.cn
更新日期/Last Update: 2023-06-02