[1]BAUER C G, FOREST T W. Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on S.I. engine performance [J]. International Journal of Hydrogen Energy, 2001, 26(1): 55-70.
[2]DAHOE A E. Laminar burning velocities of hydrogen-air mixtures from closed vessel gas explosions [J]. Journal of Loss Prevention in the Process Industries, 2005, 18(3): 152-166.
[3]DAHOE A E, ZEVENBERGEN J F, LEMKOWITZ S M, et al. Dust explosions in spherical vessels: the role of flame thickness in the validity of the ‘cube-root law’[J]. Journal of Loss Prevention in the Process Industries, 1996, 9(1): 33-44.
[4]杨勇, 张义华, 蔡律律, 等. 富氧燃烧的工业应用进展分析[J]. 能源与节能, 2021(7): 179-181, 205.
YANG Y, ZHANG Y H, CAI L L, et al. Analysis on industrial application progress of oxygen enriched combustion [J]. Energy and Energy Conservation, 2021(7): 179-181, 205.
[5]NABI M N, HUSTAD J E. Effect of fuel oxygen on engine performance and exhaust emissions including ultrafine particle fueling with dieseloxygenate blends [C]//SAE 2010 Powertrains, Fuels & Lubricants Meeting. San Diego, CA, US, 2010.
[6]CHU J W, YAO C L, QIAO G M. Reducing HC emissions of gasoline engine during cold-start by using a oxygenenriched intake air system [C]//2011 International Conference on Remote Sensing, Environment and Transportation Engineering. Nanjing, 2011: 8422-8425.
[7]GAO Q, LIU C C, JIN Y A, et al. Emission and combustion misfire of engine with oxygen-enriched in dynamic start process [C]//2009 International Conference on Energy and Environment Technology. IEEE, 2009: 117-120.
[8]杜奎林. 浅析富氧燃烧在冶金行业的应用[J]. 冶金与材料, 2018, 38(6): 178-179.
[9]SALZANO E, BASCO A, CAMMAROTA F, et al. Explosions of syngas-CO2 mixtures in oxygen-enriched air [J]. Industrial & Engineering Chemistry Research, 2012, 51(22): 7671-7678.
[10]YEPES H A, AMELL A A. Laminar burning velocity with oxygen-enriched air of syngas produced from biomass gasification [J]. International Journal of Hydrogen Energy, 2013, 38(18): 7519-7527.
[11]郑楚光, 赵永椿, 郭欣. 中国富氧燃烧技术研发进展[J]. 中国电机工程学报, 2014, 34(23): 3856-3863.
ZHENG C G, ZHAO Y C, GUO X. Research and development of oxy-fuel combustion in China[J]. Proceedings of the CSEE, 2014, 34(23): 3856-3863.
[12]VANDERSTRAETEN B, TUERLINCKX D, BERGHMANS J, et al. Experimental study of the pressure and temperature dependence on the upper flammability limit of methane-air mixtures [J]. Journal of Hazardous Materials, 1997, 56(3): 237-246.
[13]李传家, 王伯良, 黄菊, 等. 爆炸形成过程中火焰加速的试验研究[J]. 中国安全科学学报, 2011, 21(10): 76-81.
LI C J, WANG B L, HUANG J, et al. Experimental study on flame acceleration in the forming process of explosion [J]. China Safety Science Journal, 2011, 21(10): 76-81.
[14]蔺伟, 回岩, 王成, 等. 瓦斯体积分数对火焰传播规律影响的实验研究[J]. 北京理工大学学报, 2015, 35(6): 551-555.
LIN W, HUI Y, WANG C, et al. Experimental investigation about the influence of gas concentration on flame propagation [J]. Transactions of Beijing Institute of Technology, 2015, 35(6): 551-555.
[15]徐宗. 小型管道内气体燃烧火焰传播规律研究[D]. 太原: 中北大学, 2011.
XU Z. Research on gas flame propagation in small size pipe [D]. Taiyuan: North University of China, 2011.
[16]郑兴忠, 郑丹. 甲烷浓度和点火能量对瓦斯爆炸火焰长度影响的实验研究[J]. 消防技术与产品信息, 2015(3): 12-15.
[17]李润之. 点火能量与初始压力对瓦斯爆炸特性的影响研究[D]. 青岛: 山东科技大学, 2010.
LI R Z. Study on the influence of ignition energy and initial pressure on the gas explosion characteristics[D]. Qingdao: Shandong University of Science and Technology, 2010.
[18]仇锐来, 张延松, 司荣军, 等. 点火能量对瓦斯爆炸传播影响的实验研究[J]. 矿业安全与环保, 2011, 38(1): 6-9.
QIU R L, ZHANG Y S, SI R J, et al. Experimental study on influence of ignition energy upon gas explosion propagation [J]. Mining Safety & Environmental Protection, 2011, 38(1): 6-9.
[19]WANG F H, CHEN J N, WEN X P, et al. Experimental study on the explosion characteristics of CH4/O2/N2 mixtures with different oxygen enrichment coefficients and ignition positions [J]. ACS Omega, 2020, 5(47): 30495-30501.
[20]王发辉, 陈京宁, 温小萍, 等. 富氧条件下甲烷爆燃火焰传播特性试验研究[J]. 安全与环境学报, 2022, 22(1): 167-173.
WANG F H, CHEN J N, WEN X P, et al. Experimental study on flame propagation characteristics of methane deflagration under the oxygen-enriched condition [J]. Journal of Safety and Environment, 2022, 22(1): 167-173.
[21]王发辉, 孙悦, 温小萍, 等. 富氧条件下不同泄爆面积对CH4燃烧诱导快速相变的影响[J]. 安全与环境学报, 2021, 21(1): 109-116.
WANG F H , SUN Y, WEN X P, et al. Impact of the different venting areas on the combustion induced rapid phase transition (CRPT) by CH4/N2/O2enriched mixture [J]. Journal of Safety and Environment, 2021, 21(1): 109-116.
[22]DI BENEDETTOA A, DI SARLIA V, SALZANOA E, et al. Explosion behavior of CH4/O2/N2/CO2 and H2/O2/N2/CO2 mixtures [J]. International Journal of Hydrogen Energy, 2009, 34: 6970-6978.
[23]DI BENEDETTOA A, CAMMAROTA F, DI SARLIA V, et al. Anomalous behavior during explosions of CH4 in oxygen-enriched air [J]. Combustion & Flame, 2011, 158(11): 2214-2219.
[24]TANG C L, HUANG Z H, JIN C, et al. Explosion characteristics of hydrogen-nitrogen-air mixtures at elevated pressures and temperatures [J]. International Journal of Hydrogen Energy, 2009, 34(1): 554-561.
[25]伯纳德·刘易斯, 京特·冯·埃尔贝. 燃气燃烧与瓦斯爆炸[M]. 王方, 译. 北京: 中国建筑工业出版社, 2007.