[1]SESHADRI K, BERLAD A L, TANGIRALA V. The structure of premixed particle-cloud flames [J]. Combustion and Flame, 1992, 89(3/4): 333-342.
[2]BIDABADI M, FANAEE A, RAHBARI A. Investigation over the recirculation influence on the combustion of micro organic dust particles [J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(6): 685-696.
[3]CAO W G, GAO W, LIANG J Y, et al. Flame-propagation behavior and a dynamic model for the thermalradiation effects in coal-dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2014, 29: 65-71.
[4]LIU Y F, ZHANG Y, YANG Z X, et al. Experimental research on flame propagation characteristic of coal dust combustion [J]. Journal of Measurement Science and Instrumentation, 2021, 12(3): 356-361.
[5]郭家鑫, 谭迎新, 刘毅飞, 等. 燃烧管长度对煤粉火焰传播规律的影响[J]. 测试技术学报, 2021, 35(5): 381-385.
GUO J X, TAN Y X, LIU Y F, et al. Influence of combustion tube length on propagation law of pulverized coal flame [J]. Journal of Test and Measurement Technology, 2021, 35(5): 381-385.
[6]赵懿明, 刘毅飞, 杨振欣, 等. 点火能量对煤尘爆炸火焰传播规律的影响[J]. 中北大学学报(自然科学版), 2022, 43(1): 70-75.
ZHAO Y M, LIU Y F, YANG Z X, et al. Influence of ignition energy on flame propagation law of coal dust explosion [J]. Journal of North University of China (Natural Science Edition), 2022, 43(1): 70-75.
[7]LI H T, LI S S, ZHAI F E, et al. Effect of the initial oxidized status of coal dust on the deflagration severities and flame behaviors of pulverized coal explosion in various methane-air atmospheres[J]. Fuel, 2022, 315: 123211.
[8]MORADI H, SERESHKI F, ATAEI M, et al. Evaluation of the effect of the moisture content of coal dust on the prediction of the coal dust explosion index[J].The Mining-Geology-Petroleum Engineering Bulletin, 2020, 35(1): 37-47.
[9]NIU Y H, ZHANG L L, SHI B M. Experimental study on the explosion-propagation law of coal dust with different moisture contents induced by methane explosion [J]. Powder Technology, 2020, 361: 507-511.
[10]曾祥敏, 张玉刚, 蒋榕培, 等. N2O/C2H4/CO2预混气体火焰传播及爆炸特性的试验研究[J]. 火炸药学报, 2018, 41(5): 501-505.
ZENG X M, ZHANG Y G, JIANG R P, et al. Experimental investigation of flame propagation and explosion properties of premixed gases N2O/C2H4/CO2[J]. Chinese Journal of Explosives & Propellants, 2018, 41(5): 501-505.
[11]LIN S, LIU Z T, WANG Z R, et al. Flame characteristics in a coal dust explosion induced by a methane explosion in a horizontal pipeline[J]. Combustion Science and Technology, 2022, 194(3): 622-635.
[12]ZHANG Y, CAO W G, RAO G N, et al. Experiment-based investigations on the variation laws of functional groups on ignition energy of coal dusts[J]. Combustion Science and Technology, 2018, 190(10): 1850-1860.
[13]张云, 赵懿明, 谭迎新, 等. 粒径对煤粉云最低着火温度特性的影响[J]. 爆破器材, 2021, 50(6): 37-42.
ZHANG Y, ZHAO Y M, TAN Y X, et al. Influence of particle size on minimum ignition temperature characteristics of coal dust cloud [J]. Explosive Materials, 2021, 50(6): 37-42.
[14]MATTSSON T R, LANE J M D, COCHRANE K R, et al. First-principles and classical molecular dynamics simulation of shocked polymers [J]. Physical Review B, 2010, 81(5): 054103.
[15]HUO X Y, WANG F F, NIU L L, et al. Clustering rooting for the high heat resistance of some CHNO energetic materials [J]. Fire Physical Chemistry, 2021, 1(1): 8-20.