[1]刘静平①,杨振欣②,赵懿明②,等.褐煤煤尘爆炸火焰传播特性及燃烧热分解机理研究[J].爆破器材,2022,51(06):16-21.[doi:10.3969/j.issn.1001-8352.2022.06.003]
 LIU Jingping,YANG Zhenxin,ZHAO Yiming,et al.Study on Flame Propagation Characteristics and Combustion Pyrolysis Mechanism of Lignite Dust Explosion[J].EXPLOSIVE MATERIALS,2022,51(06):16-21.[doi:10.3969/j.issn.1001-8352.2022.06.003]
点击复制

褐煤煤尘爆炸火焰传播特性及燃烧热分解机理研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
51
期数:
2022年06
页码:
16-21
栏目:
基础理论
出版日期:
2022-11-25

文章信息/Info

Title:
Study on Flame Propagation Characteristics and Combustion Pyrolysis Mechanism of Lignite Dust Explosion
文章编号:
5736
作者:
刘静平杨振欣赵懿明刘毅飞吴星亮徐司雨徐森
①南京理工大学化学与化工学院(江苏南京,210094)
②中北大学环境与安全工程学院(山西太原,030051)
③西安近代化学研究所燃烧与爆炸技术重点实验室(陕西西安,710065)
Author(s):
LIU Jingping YANG Zhenxin ZHAO Yiming LIU Yifei WU Xingliang XU Siyu XU Sen
①School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②School of Environment and Safety Engineering, North University of China (Shanxi Taiyuan, 030051)
③Science and Technology on Combustion and Explosion Laboratory, Xi’an Modern Chemistry Research Institute (Shaanxi Xi’an, 710065)
关键词:
褐煤煤尘粉尘粒径火焰传播爆炸过程分子动力学
Keywords:
lignite dust dust particle size flame propagation explosion process molecular dynamics
分类号:
X932
DOI:
10.3969/j.issn.1001-8352.2022.06.003
文献标志码:
A
摘要:
煤尘爆炸是矿井安全开采的主要危险源之一。以褐煤煤尘为研究对象,探究煤尘粒径对煤尘火焰传播过程的影响。用高速摄影装置记录火焰的传播过程,进而分析不同粒径下煤尘爆炸火焰传播的高度和速度。为进一步分析煤尘燃烧过程中的化学反应机理,借助反应分子动力学方法对煤分子燃烧中的初始热分解过程进行了模拟。研究结果表明:爆炸火焰传播高度呈先增加、后稳定的趋势,传播速度呈先增大、后减小的趋势;随着煤尘粒径的减小,火焰传播高度和传播速度均呈增大的趋势;当煤尘粒径为10.5 μm时,火焰传播高度和传播速度的峰值分别为623 mm和4.3 m/s;煤尘热分解主要产物为H2、H2O、CO2和CH2O,这些产物进一步与氧气的结合会促进煤尘燃烧和火焰传播过程,使得整个体系燃速加快。为煤尘热分解和燃烧提供了较为充分的数据基础。
Abstract:
Coal dust explosion is one of the main hazard sources for safe mining in mines. Taking lignite dust as the research object to explore the effect of dust particle size on the coal dust flame propagation. The flame propagation was recorded by a high-speed camera, and the height and velocity of flame propagation in coal dust explosion under different particle sizes were analyzed. To further analyze the chemical reaction mechanism during the combustion of coal dust, the initial pyrolysis process of coal molecules in combustion was simulated through reactive molecular dynamics. Results show that propagation height of flame increases first and then stabilizes, and propagation velocity increasesfirst and then decreases. With the decrease of the particle size of coal dust, the flame propagation height and propagation velocity both show an increasing trend. When the particle size is 10.5 μm, the flame propagation height peak and propagation velocity peak are 623 mm and 4.3 m/s, respectively. The main products of coal dust pyrolysis are H2, H2O, CO2, and CH2O, and the further combination of these products with oxygen will promote the combustion and flame propagation of coal dust, so that the combustion rate of the whole system is accelerated. It provids a sufficient data support for coal dust pyrolysis and combustion.

参考文献/References:

[1]SESHADRI K, BERLAD A L, TANGIRALA V. The structure of premixed particle-cloud flames [J]. Combustion and Flame, 1992, 89(3/4): 333-342.
[2]BIDABADI M, FANAEE A, RAHBARI A. Investigation over the recirculation influence on the combustion of micro organic dust particles [J]. Applied Mathematics and Mechanics (English Edition), 2010, 31(6): 685-696.
[3]CAO W G, GAO W, LIANG J Y, et al. Flame-propagation behavior and a dynamic model for the thermalradiation effects in coal-dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2014, 29: 65-71.
[4]LIU Y F, ZHANG Y, YANG Z X, et al. Experimental research on flame propagation characteristic of coal dust combustion [J]. Journal of Measurement Science and Instrumentation, 2021, 12(3): 356-361.
[5]郭家鑫, 谭迎新, 刘毅飞, 等. 燃烧管长度对煤粉火焰传播规律的影响[J]. 测试技术学报, 2021, 35(5): 381-385.
GUO J X, TAN Y X, LIU Y F, et al. Influence of combustion tube length on propagation law of pulverized coal flame [J]. Journal of Test and Measurement Technology, 2021, 35(5): 381-385.
[6]赵懿明, 刘毅飞, 杨振欣, 等. 点火能量对煤尘爆炸火焰传播规律的影响[J]. 中北大学学报(自然科学版), 2022, 43(1): 70-75.
ZHAO Y M, LIU Y F, YANG Z X, et al. Influence of ignition energy on flame propagation law of coal dust explosion [J]. Journal of North University of China (Natural Science Edition), 2022, 43(1): 70-75.
[7]LI H T, LI S S, ZHAI F E, et al. Effect of the initial oxidized status of coal dust on the deflagration severities and flame behaviors of pulverized coal explosion in various methane-air atmospheres[J]. Fuel, 2022, 315: 123211.
[8]MORADI H, SERESHKI F, ATAEI M, et al. Evaluation of the effect of the moisture content of coal dust on the prediction of the coal dust explosion index[J].The Mining-Geology-Petroleum Engineering Bulletin, 2020, 35(1): 37-47.
[9]NIU Y H, ZHANG L L, SHI B M. Experimental study on the explosion-propagation law of coal dust with different moisture contents induced by methane explosion [J]. Powder Technology, 2020, 361: 507-511.
[10]曾祥敏, 张玉刚, 蒋榕培, 等. N2O/C2H4/CO2预混气体火焰传播及爆炸特性的试验研究[J]. 火炸药学报, 2018, 41(5): 501-505.
ZENG X M, ZHANG Y G, JIANG R P, et al. Experimental investigation of flame propagation and explosion properties of premixed gases N2O/C2H4/CO2[J]. Chinese Journal of Explosives & Propellants, 2018, 41(5): 501-505.
[11]LIN S, LIU Z T, WANG Z R, et al. Flame characteristics in a coal dust explosion induced by a methane explosion in a horizontal pipeline[J]. Combustion Science and Technology, 2022, 194(3): 622-635.
[12]ZHANG Y, CAO W G, RAO G N, et al. Experiment-based investigations on the variation laws of functional groups on ignition energy of coal dusts[J]. Combustion Science and Technology, 2018, 190(10): 1850-1860.
[13]张云, 赵懿明, 谭迎新, 等. 粒径对煤粉云最低着火温度特性的影响[J]. 爆破器材, 2021, 50(6): 37-42.
ZHANG Y, ZHAO Y M, TAN Y X, et al. Influence of particle size on minimum ignition temperature characteristics of coal dust cloud [J]. Explosive Materials, 2021, 50(6): 37-42.
[14]MATTSSON T R, LANE J M D, COCHRANE K R, et al. First-principles and classical molecular dynamics simulation of shocked polymers [J]. Physical Review B, 2010, 81(5): 054103.
[15]HUO X Y, WANG F F, NIU L L, et al. Clustering rooting for the high heat resistance of some CHNO energetic materials [J]. Fire Physical Chemistry, 2021, 1(1): 8-20.

备注/Memo

备注/Memo:
收稿日期:2022-06-19
第一作者:刘静平(1974-),女,高工,主要从事粉尘、气体爆炸安全测试方面的研究。E-mail:mbzx_liu@126.com
更新日期/Last Update: 2022-11-21