[1]陈资,李昌.基于KPCA-WOA-ELM的爆破飞石距离预测[J].爆破器材,2022,51(02):47-51.[doi:10.3969/j.issn.1001-8352.2022.02.008]
 CHEN Zi,LI Chang.Prediction of Blasting Flyrock Distance Based on KPCA-WOA-ELM[J].EXPLOSIVE MATERIALS,2022,51(02):47-51.[doi:10.3969/j.issn.1001-8352.2022.02.008]
点击复制

基于KPCA-WOA-ELM的爆破飞石距离预测()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
51
期数:
2022年02
页码:
47-51
栏目:
爆破技术
出版日期:
2022-04-06

文章信息/Info

Title:
Prediction of Blasting Flyrock Distance Based on KPCA-WOA-ELM
文章编号:
5627
作者:
陈资李昌
广东理工学院工业自动化系(广东肇庆,526100)
Author(s):
CHEN Zi LI Chang
Department of Industrial Automation, Guangdong Polytechnic College (Guangdong Zhaoqing, 526100)
关键词:
爆破飞石距离KPCA-WOA-ELM预测露天煤矿
Keywords:
blasting flyrock distance KPCA-WOA-ELM prediction open-pit coal mine
分类号:
TD235.41;TD824.2
DOI:
10.3969/j.issn.1001-8352.2022.02.008
文献标志码:
A
摘要:
为提高爆破飞石距离预测的精度和效率,构建了一种基于核主成分分析法(KPCA)和鲸鱼算法(WOA)优化的极限学习机(ELM)爆破飞石距离预测模型。以国内某露天煤矿爆破工程为例,选取影响爆破飞石距离的7个因素。通过KPCA对影响因素间非相关性关系进行降维,提取出包含原始信息95.76%的4个主成分作为模型输入。然后,采用WOA对ELM进制参数寻优,避免了局部最优解问题。结果表明,KPCA-WOA-ELM模型的平均相对误差、均方根误差RMSE、决定系数R2和平均绝对误差RMAE分别为4.271%、6.681、0.985和6.413,均优于对比模型。说明该模型可实现对爆破飞石距离的准确预测,为确定爆破作业中的爆破安全区提供依据。
Abstract:
In order to improve the prediction accuracy and efficiency of blasting flyrock distance, a prediction model of blasting flyrock distance based on kernel principal component analysis (KPCA) and extreme learning machine (ELM) and optimized by a whale optimization algorithm (WOA) was established. Taking a blasting operations in open-pit coal mine as an example, seven influencing factors of blasting flyrock distance were selected. KPCA was used to reduce the dimension of the non-correlation relationship between the influencing factors, and four principal components containing 95.76% of the original information were extracted as the model input. Then, WOA was used to optimize the ELM system parameters to avoid the problem of local optimal solution. Results indicate that the average relative error, root mean square error RMSE, coefficient of determination R2and average absolute error RMAEof KPCA-WOA-ELM model are 4.271%, 6.681, 0.985 and 6.413, respectively, which are better than those of the comparison model. KPCA-WOA-ELM model can accurately predict blasting flyrock distance, and it could provide a basis for determining the blasting safety zone in blasting operation.

参考文献/References:

[1]KALAIVAANI P T, AKILA T, TAHIR M M, et al. A novel intelligent approach to simulate the blast-induced flyrock based on RFNN combined with PSO[J]. Engineering with Computers, 2020, 36(2): 435-442.
[2]FATTAHI H , HASANIPANAH M . An integrated approach of ANFIS-grasshopper optimization algorithm to approximate flyrock distance in mine blasting[J]. Engineering with Computers, 2021,37(7): 1-13.
[3]YE J, KOOPIALIPOOR M, ZHOU J, et al. A novel combination of tree-based modeling and monte carlo simulation for assessing risk levels of flyrock induced by mine blasting[J]. Natural Resources Research, 2020, 30(3): 225-243.
[4]DEHGHANI H, SHAFAGHI M. Prediction of blastinduced flyrock using differential evolution algorithm[J]. Engineering with Computers, 2017, 33(1): 149-158.
[5] YARI M, BAGHERPOUR R, JAMALI S, et al. Development of a novel flyrock distance prediction model using BPNN for providing blasting operation safety[J]. Neural Computing and Applications, 2016, 27(3): 699-706.
[6]刘庆,张光权,吴春平,等.基于BP神经网络模型的爆破飞石最大飞散距离预测研究[J].爆破,2013,30(1): 114-118.
LIU Q, ZHANG G Q, WU C P, et al. Research on maximum distance prediction of blast flyrock based on BP neural network [J].Blasting, 2013, 30(1): 114-118.
[7]陈建宏,彭耀,邬书良.基于灰色Elman神经网络的爆破飞石距离预测研究[J].爆破,2015,32(1):151-156.
CHEN J H, PENG Y, WU S L, et al. Prediction of blasting flyrock distance based on Elman neural network[J].Blasting, 2015,32(1):151-156.
[8]GUO H Q, ZHOU J , KOOPIALIPOOR M, et al. Deep neural network and whale optimization algorithm to assess flyrock induced by blasting[J]. Engineering with Computers, 2021, 37(4): 173-186.
[9]ZHOU J, KOOPIALIPOOR M, MURLIDHAR B R, et al. Use of intelligent methods to design effective pattern parameters of mine blasting to minimize flyrock distance[J]. Natural Resources Research, 2020, 29(11): 625-639.
[10]ARMAGHANI D J, KOOPIALIPOOR M, BAHRI M, et al. A SVR-GWO technique to minimize flyrock distance resulting from blasting[J].Bulletin of Engineering -Geology and the Environment, 2020, 79(3): 4369-4385.
[11]肖鹏,谢行俊,双海清,等.基于KPCA-CMGANN算法的瓦斯涌出量预测研究[J]. 中国安全科学学报, 2020, 30(5): 39-47.
XIAO P, XIE X J, SHUANG H Q, et al. Prediction of gas emission quantity based on KPCA-CMGANN algorithm[J]. China Safety Science Journal, 2020, 30(5): 39-47.
[12] GHARAHBAGHERI H, IMTIAZ S, KHAN F. Combination of KPCA and causality analysis for root cause diagnosis of industrial process fault[J]. The Canadian Journal of Chemical Engineering, 2017, 95(8): 1497-1509.
[13]ROOPA H, ASHA T. Feature extraction of chest X-ray images and analysis using PCA and KPCA[J]. International Journal of Electrical and Computer Engineering, 2018, 8(5): 3392-3398.
[14]毛志勇,黄春娟,路世昌,等.基于KPCA-MPSO-ELM的矿井突水水源判别模型[J].中国安全科学学报,2018,28(8):111-116.
MAO Z Y, HUANG C J, LU S C, et al. KPCA-MPSO-ELM based model for discrimination of mine water inrush source[J]. China Safety Science Journal, 2018, 28(8): 111-116.
[15]李鹏,常思婕.鲸鱼优化算法下气体泄漏源波达方向估计法[J].中国安全科学学报,2021,31(3):19-27.
LI P, CHANG S J. DOA method of gas leakage source based on WOA [J]. China Safety Science Journal, 2021, 31(3): 19-27.

相似文献/References:

[1]郑思友,翟廷海.工业雷管可靠起爆塑料导爆管试验研究[J].爆破器材,2010,39(02):29.
 ZHENG Siyou,Experimental Study on Detonating Plastic Nonel Tube Reliably by Industrial Detonator[J].EXPLOSIVE MATERIALS,2010,39(02):29.
[2]朱朝祥,吴岩,蔡伟,等.高温热凝结构爆破处理方法的探讨[J].爆破器材,2009,38(05):34.
 ZHU Chaoxiang,WU Yan,CAI Wei,et al.The Discussion of High Temperature Coagulum Processing Method by Demolition[J].EXPLOSIVE MATERIALS,2009,38(02):34.
[3]宋克健,龙源,胡新印,等.装药结构对药孔爆破初始压力及能量利用率的影响[J].爆破器材,2011,40(03):1.
 SONG Kejian,LONG Yuan,HU Xinyin,et al.The Influence of Charge Construction on the Initial Shock Pressure and the Utilization Ratio of Energy[J].EXPLOSIVE MATERIALS,2011,40(02):1.
[4]吕小师,王春玲,李高峰.锅炉炉膛结焦清除中的外部快速装药爆破技术[J].爆破器材,2011,40(04):19.
 L Xiaoshi,WANG Chunling,LI Gaofeng.External Fast Charge Blasting Techniques in Clearing Coking of Furnace Chamber[J].EXPLOSIVE MATERIALS,2011,40(02):19.
[5]王毅,杨军,徐振洋,等.RTK技术在露天矿布孔中的应用研究[J].爆破器材,2013,42(06):38.[doi:10.3969/j.issn.1001-8352.2013.06.008]
 WANG Yi,YANG Jun,XU Zhenyang,et al.Application Research of RTK in Open-pit Mine Hole Arrangement[J].EXPLOSIVE MATERIALS,2013,42(02):38.[doi:10.3969/j.issn.1001-8352.2013.06.008]
[6]宋日,郭占江,王丽杰.非洲AEL公司乳化炸药现场混制和装药技术分析[J].爆破器材,2008,37(04):11.
 Song Ri,Guo Zhanjiang,Wang Lijie.Analysis of Emulsion Explosive On-site Mixing and Loading Technology of African Explosives Limited (AEL)[J].EXPLOSIVE MATERIALS,2008,37(02):11.
[7]李金明,丁玉奎,可勇.利用聚能原理销毁危险弹药的试验方法[J].爆破器材,2008,37(03):37.
 Li Jinming,Ding Yukui,Ke Yong.The Test Method of Disposing Danger Ammuniti on by Using Gather Energy Theory[J].EXPLOSIVE MATERIALS,2008,37(02):37.
[8]于妍宁,徐振洋,郭连军,等.岩石动态特性对爆破振动能量分布的影响[J].爆破器材,2015,44(06):15.[doi:10.3969/j.issn.1001-8352.2015.06.004]
 YU Yanning,XU Zhenyang,GUO Lianjun,et al.Influence of Rock Dynamic Characteristics on Distribution of Blasting Vibration[J].EXPLOSIVE MATERIALS,2015,44(02):15.[doi:10.3969/j.issn.1001-8352.2015.06.004]
[9]赵春生①,费鸿禄②,胡刚②.循环爆破作用下岩体的不同步累积损伤测试方法[J].爆破器材,2019,48(02):57.[doi:10.3969/j.issn.1001-8352.2019.02.011]
 ZHAO Chunsheng,FEI Honglu,HU Gang.Asynchronous Accumulative Damage Testing Method of Rock under Cyclic Blasting[J].EXPLOSIVE MATERIALS,2019,48(02):57.[doi:10.3969/j.issn.1001-8352.2019.02.011]
[10]胡刚①,费鸿禄①,郭玉新②,等.爆破作用下影响矿柱稳定性的多因素联合分析[J].爆破器材,2023,52(04):58.[doi:10.3969/j.issn.1001-8352.2023.04.009]
 HU Gang,FEI Honglu,GUO Yuxin,et al.Combined Analysis of Multiple Factors Affecting the Stability of Pillars under Blasting Loads[J].EXPLOSIVE MATERIALS,2023,52(02):58.[doi:10.3969/j.issn.1001-8352.2023.04.009]

备注/Memo

备注/Memo:
收稿日期:2021-07-12
基金项目:广东省科技创新战略专项资金立项项目(pdjh2021b0595)
第一作者:陈资(1995-),男,硕士,讲师,主要从事爆炸安全的研究。E-mail:czi826_1@163.com
更新日期/Last Update: 2022-04-06