[1]KALAIVAANI P T, AKILA T, TAHIR M M, et al. A novel intelligent approach to simulate the blast-induced flyrock based on RFNN combined with PSO[J]. Engineering with Computers, 2020, 36(2): 435-442.
[2]FATTAHI H , HASANIPANAH M . An integrated approach of ANFIS-grasshopper optimization algorithm to approximate flyrock distance in mine blasting[J]. Engineering with Computers, 2021,37(7): 1-13.
[3]YE J, KOOPIALIPOOR M, ZHOU J, et al. A novel combination of tree-based modeling and monte carlo simulation for assessing risk levels of flyrock induced by mine blasting[J]. Natural Resources Research, 2020, 30(3): 225-243.
[4]DEHGHANI H, SHAFAGHI M. Prediction of blastinduced flyrock using differential evolution algorithm[J]. Engineering with Computers, 2017, 33(1): 149-158.
[5] YARI M, BAGHERPOUR R, JAMALI S, et al. Development of a novel flyrock distance prediction model using BPNN for providing blasting operation safety[J]. Neural Computing and Applications, 2016, 27(3): 699-706.
[6]刘庆,张光权,吴春平,等.基于BP神经网络模型的爆破飞石最大飞散距离预测研究[J].爆破,2013,30(1): 114-118.
LIU Q, ZHANG G Q, WU C P, et al. Research on maximum distance prediction of blast flyrock based on BP neural network [J].Blasting, 2013, 30(1): 114-118.
[7]陈建宏,彭耀,邬书良.基于灰色Elman神经网络的爆破飞石距离预测研究[J].爆破,2015,32(1):151-156.
CHEN J H, PENG Y, WU S L, et al. Prediction of blasting flyrock distance based on Elman neural network[J].Blasting, 2015,32(1):151-156.
[8]GUO H Q, ZHOU J , KOOPIALIPOOR M, et al. Deep neural network and whale optimization algorithm to assess flyrock induced by blasting[J]. Engineering with Computers, 2021, 37(4): 173-186.
[9]ZHOU J, KOOPIALIPOOR M, MURLIDHAR B R, et al. Use of intelligent methods to design effective pattern parameters of mine blasting to minimize flyrock distance[J]. Natural Resources Research, 2020, 29(11): 625-639.
[10]ARMAGHANI D J, KOOPIALIPOOR M, BAHRI M, et al. A SVR-GWO technique to minimize flyrock distance resulting from blasting[J].Bulletin of Engineering -Geology and the Environment, 2020, 79(3): 4369-4385.
[11]肖鹏,谢行俊,双海清,等.基于KPCA-CMGANN算法的瓦斯涌出量预测研究[J]. 中国安全科学学报, 2020, 30(5): 39-47.
XIAO P, XIE X J, SHUANG H Q, et al. Prediction of gas emission quantity based on KPCA-CMGANN algorithm[J]. China Safety Science Journal, 2020, 30(5): 39-47.
[12] GHARAHBAGHERI H, IMTIAZ S, KHAN F. Combination of KPCA and causality analysis for root cause diagnosis of industrial process fault[J]. The Canadian Journal of Chemical Engineering, 2017, 95(8): 1497-1509.
[13]ROOPA H, ASHA T. Feature extraction of chest X-ray images and analysis using PCA and KPCA[J]. International Journal of Electrical and Computer Engineering, 2018, 8(5): 3392-3398.
[14]毛志勇,黄春娟,路世昌,等.基于KPCA-MPSO-ELM的矿井突水水源判别模型[J].中国安全科学学报,2018,28(8):111-116.
MAO Z Y, HUANG C J, LU S C, et al. KPCA-MPSO-ELM based model for discrimination of mine water inrush source[J]. China Safety Science Journal, 2018, 28(8): 111-116.
[15]李鹏,常思婕.鲸鱼优化算法下气体泄漏源波达方向估计法[J].中国安全科学学报,2021,31(3):19-27.
LI P, CHANG S J. DOA method of gas leakage source based on WOA [J]. China Safety Science Journal, 2021, 31(3): 19-27.