[1]张云,赵懿明,谭迎新,等.粒径对煤粉云最低着火温度特性的影响[J].爆破器材,2021,50(06):37-42.[doi:10.3969/j.issn.1001-8352.2021.06.006]
 ZHANG Yun,ZHAO Yiming,TAN Yingxin,et al.Influence of Particle Size on Minimum Ignition Temperature Characteristics of Coal Dust Cloud[J].EXPLOSIVE MATERIALS,2021,50(06):37-42.[doi:10.3969/j.issn.1001-8352.2021.06.006]
点击复制

粒径对煤粉云最低着火温度特性的影响()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
50
期数:
2021年06
页码:
37-42
栏目:
爆炸材料
出版日期:
2021-11-26

文章信息/Info

Title:
Influence of Particle Size on Minimum Ignition Temperature Characteristics of Coal Dust Cloud
文章编号:
5610
作者:
张云赵懿明谭迎新尉存娟杨振欣周庄红曹卫国
中北大学环境与安全工程学院(山西太原,030051)
Author(s):
ZHANG Yun ZHAO Yiming TAN Yingxin YU Cunjuan YANG Zhenxin ZHOU Zhuanghong CAO Weiguo
School of Environmental and Safety Engineering, North University of China (Shanxi Taiyuan, 030051)
关键词:
煤粉最低着火温度粒径分解过程中间产物
Keywords:
coal dust minimum ignition temperature particle size pyrolysis process intermediates
分类号:
X932
DOI:
10.3969/j.issn.1001-8352.2021.06.006
文献标志码:
A
摘要:
为了研究粒径对煤粉云最低着火温度特性的影响,采用粉尘云最低着火温度测试装置测试了不同粒径下煤粉云的最低着火温度,并结合ReaxFF分子动力学对其反应机理进行了微观层面的探讨。结果表明:当煤粉中位径在34 μm时,煤粉云的最佳着火质量浓度为750 g/m3,最低着火温度为550 ℃;随着煤粉粒径的增加,煤粉云最低着火温度逐渐增大,当煤粉中位径达到124 μm,煤粉云最低着火温度上升至650 ℃。通过ReaxFF分子动力学对煤粉热解过程的计算结果表明:随着反应的进行,大分子煤结构逐步分解,芳香环、C—C键、C—O键和C—H键等断裂,产生更小的分子结构,其中,H2、H2O、CO2和CH2O等小分子产生的数量逐渐增多;H·自由基和OH·自由基在反应初期有明显的数量变化,且其含量对于最终稳定产物有重要影响。
Abstract:
To explore the influence of particle size on the minimum ignition temperature characteristics of coal dust cloud, the minimum ignition temperature of coal dust cloud with different particle sizes was tested by using the minimum ignition temperature test device of dust cloud. The reaction mechanism was discussed at micro scopic level using ReaxFF molecular dynamics research method. The results show that when the median diameter of coal particle is 34 μm, the optimum ignition mass concentration and minimum ignition temperature of coal dust cloud are 750 g/m3 and 550 ℃, respectively. The minimum ignition temperature of coal dust cloud gradually increases with the increase of coal particle size. When the median diameter of coal particle reaches 124 μm, the minimum ignition temperature of coal dust cloud rises to 650 ℃. In addition, the pyrolysis result of coal dust calculated by ReaxFF molecular dynamics shows that, with the reaction proceeding, the structure of macro-molecular coal is decomposed step by step, and the aromatic rings, C—C bonds, C—O bonds, and C—H bonds fractures to form the smaller molecular structure. Among them, the numbers of small molecules such as H2, H2O, CO2, and CH2O gradually increase. H· radicals and OH· radicals have obvious quantity changes at the initial stage of the reaction, and its content has an important influence on the final stable product.

参考文献/References:

[1]CAO W G, QIN Q F, CAO W, et al. Experimental and numerical studies on the explosion severities of coal dust/air mixtures in a 20-L spherical vessel [J]. Powder Technology, 2017, 310:17-23.
[2]SKJOLD T, CASTELLANOS D, OLSEN K L, et al. Experimental and numerical investigation of constant volume dust and gas explosions in a 3.6m flame acceleration tube [J]. Journal of Loss Prevention in the Process Industries, 2014, 30:164-176.
[3]CASTELLANOS D, SKJOLD T, VAN WINGERDEN K, et al. Validation of the DESC code in simulating the effect of vent ducts on dust explosions [J]. Industrial & Engineering Chemistry Research, 2013, 52 (17): 6057-6067.
[4]CLONEY C T, RIPLEY R C, PEGG M J, et al. Lower flammability limits of hybrid mixtures containing 10 micron coal dust particles and methane gas [J]. Process Safety and Environmental Protection, 2018, 120:215-226.
[5]CLONEY C T, RIPLEY R C, PEGG M J, et al. Laminar combustion regimes for hybrid mixtures of coal dust with methane gas below the gas lower flammability limit [J]. Combustion and Flame, 2018, 198: 14-23.
[6]刘义, 孙金华, 陈东梁, 等. 甲烷煤尘复合体系中煤尘爆炸下限的实验研究[J]. 安全与环境学报, 2007, 7(4): 129-131.
LIU Y, SUN J H, CHEN D L, et al. On lower limit of explosive coal dust in coal dust mixture with methane [J]. Journal of Safety and Environment, 2007, 7(4): 129-131.
[7]景国勋, 邵泓源, 吴昱楼, 等. 半封闭管道内瓦斯煤尘爆炸火焰传播特性试验[J]. 安全与环境学报, 2020, 20(4): 1321-1326.
JING G X, SHAO H Y, WU Y L, et al. Experimental approach to the flame propagation features of the explosive gas and coal dust in the semienclosed pipeline[J]. Journal of Safety and Environment, 2020, 20(4): 1321-1326.
[8]TAN X, SCHMIDT M, ZHAO P, et al. Minimum ignition temperature of carbonaceous dust clouds in air with CH4/H2/CO below the gas lower explosion limit[J]. Fuel, 2020, 264: 116811.
[9]ZHAO P, TAN X, SCHMIDT M, et al. Minimum explosion concentration of coal dusts in air with small amount of CH4/H2/CO under 10-kJ ignition energy conditions [J]. Fuel, 2020, 260: 116401.
[10]GAO W, YU J L, LI J, et al. Experimental investigation on micro-and nano-PMMA dust explosion venting at elevated static activation overpressures [J]. Powder Technology, 2016, 301: 713-722.
[11]GAO W, MOGI T, YU J L, et al. Flame propagation mechanisms in dust explosions [J]. Journal of Loss Prevention in the Process Industries, 2015, 36: 186-194.
[12]XU S, LIU J F, CAO W, et al. Experimental study on the minimum ignition temperature and combustion kinetics of coal dust/air mixtures [J]. Powder Technology, 2017, 317: 154-161.
[13]ZHANG Y, CAO W G, RAO G N, et al. Experiment-based investigations on the variation laws of functional groups on ignition energy of coal dusts [J]. Combustion Science and Technology, 2018, 190(10): 1850-1860.
[14]袁帅, 王庆慧, 王丹枫, 等. 粉尘爆炸防护措施的研究进展[J]. 爆破器材, 2017, 46(4):13-20.
YUAN S, WANG Q H, WANG D, et al. Research progress of preventive and control measures for dust explosion [J]. Explosive Materials, 2017, 46(4):13-20.
[15]苏浩, 仲海霞, 曹勇, 等. 锆金属粉尘云最小点火能和最低着火温度的试验研究[J]. 爆破器材, 2019, 48(2):25-31.
SU H, ZHONG H X, CAO Y, et al. Experimental investigation of the minimum ignition energy and the minimum ignition temperature of zirconium dust cloud[J]. Explosive Materials, 2019, 48(2):25-31.
[16]American Society for Testing Material. Standard test method for minimum autoignition temperature of dust clouds:ASTM E1491—06(2019)[S]. West Conshohocken, PA, US: ASTM International,2019.
[17]高聪, 李化, 苏丹, 等. 密闭空间煤粉的爆炸特性[J]. 爆炸与冲击, 2010, 30(2):164-168.
GAO C, LI H, SU D, et al. Explosion characteristics of coal dust in a sealed vessel [J]. Explosion and Shock Waves, 2010, 30(2):164-168.
[18]SOLOMON P R, SERIO M A, SUUBERG E M. Coal pyrolysis: experiments, kinetic rates and mechanisms [J]. Progress in Energy and Combustion Science, 1992, 18(2):133-220.
[19]SOLOMON P R, FLETCHER T H, PUGMIRE R J. Progress in coal pyrolysis [J]. Fuel, 1993, 72(5):587-597.
[20]MIURA K. Mild conversion of coal for producing valuable chemicals [J]. Fuel Processing Technology, 2000, 62(2/3):119-135.
[21]LIU Z Y, GUO X J, SHI L, et al. Reaction of volatiles: A crucial step in pyrolysis of coals [J]. Fuel, 2015, 154:361-369.
[22]WOLFRUM E A. Correlations between petrographical properties, chemical structure, and technological behavior of rhenish brown coal [M]//The chemistry of low-rank coals. Washington D C,US:ACS Publications, 1984:15-37.
[23]MATTSSON T R, LANE J M D, COCHRANE K R, et al. First-principles and classical molecular dynamics simulation of shocked polymers[J]. Physical Review B, 2010, 81:054103.
[24]CAO W G, CAO W, PENG Y H, et al. Experimental study on the combustion sensitivity parameters and precombusted changes in functional groups of lignite coal dust [J]. Powder Technology, 2015, 283:512-518.

相似文献/References:

[1]曹卫国①②,郑俊杰①②,彭于怀①,等.玉米淀粉粉尘爆炸特性及火焰传播过程的试验研究[J].爆破器材,2016,45(01):1.[doi:10.3969/j.issn.1001-8352.2016.01.001]
 CAO Weiguo,ZHENG Junjie,PENG Yuhuai,et al.Experimental Study on Explosion Characteristics and Flame Propagation Process of Corn Starch Dust[J].EXPLOSIVE MATERIALS,2016,45(06):1.[doi:10.3969/j.issn.1001-8352.2016.01.001]
[2]苏浩①,仲海霞②,曹勇①,等.锆金属粉尘云最小点火能和最低着火温度的试验研究[J].爆破器材,2019,48(02):25.[doi:10.3969/j.issn.1001-8352.2019.02.005]
 SU Hao,ZHONG Haixia,CAO Yong,et al.Experimental Investigation of the Minimum Ignition Energy and the Minimum Ignition Temperature of Zirconium Dust Cloud[J].EXPLOSIVE MATERIALS,2019,48(06):25.[doi:10.3969/j.issn.1001-8352.2019.02.005]

备注/Memo

备注/Memo:
收稿日期:2021-05-25
基金项目:国家自然科学基金(11802272); 山西省重点研发项目(201903D121028); 山西省自然科学基金(201901D211228)
第一作者:张云(1986-),女,博士,主要从事能源爆炸能量释放调控规律方向研究。E-mail:zhangyun@nuc.edu.cn
通信作者:曹卫国(1984-),男,博士,副教授,主要从事粉尘/气体多相流燃烧与爆炸研究。E-mail:caoweiguoiem@nuc.edu.cn
更新日期/Last Update: 2021-11-22