[1]赵娟,冯博,薛乐星,等.不同加载压力下HMX基含铝炸药的冲击起爆特性[J].爆破器材,2021,50(01):26-31.[doi:10.3969/j.issn.1001-8352.2021.01.005]
 ZHAO Juan,FENG Bo,XUE Lexing,et al.Shock Initiation Characteristics of HMX Based Aluminized Explosive under the Different Loading Pressure[J].EXPLOSIVE MATERIALS,2021,50(01):26-31.[doi:10.3969/j.issn.1001-8352.2021.01.005]
点击复制

不同加载压力下HMX基含铝炸药的冲击起爆特性()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
50
期数:
2021年01
页码:
26-31
栏目:
爆炸材料
出版日期:
2021-01-22

文章信息/Info

Title:
Shock Initiation Characteristics of HMX Based Aluminized Explosive under the Different Loading Pressure
文章编号:
5492
作者:
赵娟冯博薛乐星冯晓军
西安近代化学研究所(陕西西安,710065)
Author(s):
ZHAO Juan FENG Bo XUE Lexing FENG Xiaojun
Xi'an Modern Chemistry Research Institute (Shaanxi X'an, 710065)
关键词:
冲击起爆HMX基含铝炸药数值模拟反应速率方程
Keywords:
shock initiation HMX based aluminized explosive numerical simulation equation of reaction state
分类号:
TQ560;O381
DOI:
10.3969/j.issn.1001-8352.2021.01.005
文献标志码:
A
摘要:
为了研究HMX基含铝炸药的冲击起爆特性,对其进行了两种加载压力下的冲击起爆试验。结果表明,加载压力为14.68 GPa时,其到爆轰距离为12.04~15.38 mm;加载压力为15.55 GPa时,到爆轰距离为10.23~12.01 mm;稳定爆轰后的爆轰压力约为25 GPa。基于圆筒试验确定了HMX基含铝炸药的JWL状态方程参数,结合两种加载压力下的冲击起爆试验结果进行数值模拟,标定并验证了点火增长模型反应速率方程参数。计算结果与试验结果一致。得到14.68 GPa加载压力下HMX基含铝炸药到爆轰时间为2.5 μs,到爆轰距离为13.70 mm;15.55 GPa加载压力下的到爆轰时间为1.9 μs,到爆轰距离为10.60 mm。计算结果表明,加载压力增大,前导冲击波速度增长变快,波阵面压力增长变快,炸药到爆轰时间与到爆轰距离减小,爆轰成长阶段同一时刻下的波阵面压力增长速率也随之增大。
Abstract:
In order to investigate shock initiation characteristics of HMX based aluminized explosive, shock initiation tests under two different initiation pressures were conducted. When the initiation pressure is 14.68 GPa, run distance to detonation of HMX based aluminized explosive is 12.04 mm to 15.38 mm. When the initiation pressure is 15.55 GPa, run distance to detonation of HMX based aluminized explosive is 10.23 mm to 12.01 mm. Under steady detonation distance, the detonation pressure of HMX based aluminized explosive was 25 GPa. According to cylinder test, parameters of JWL equation of state were obtained. Ignition and growth reaction rate equation was used to numerically simulate shock initiation of the explosive. Based on the shock initiation tests of two different initiation pressures, the parameters were determined for the ignition and growth reaction rate equation of the explosive. The calculated results are consistent with the experimental results. When the initiation pressure is 14.68 GPa, detonation time is 2.5 μs, and run distance to detonation is 13.70 mm. When the initiation pressure is 15.55 GPa, detonation time is 1.9 μs, and run distance to detonation is 10.60 mm. The results show that with the increase of the initiation pressure, velocity of the front shock wave and pressure of the front increase faster, the time to detonation and the distance to detonation decrease, and the growth rate of the front pressure increases at the same time in the detonation growth stage.

参考文献/References:

[1]宋浦, 肖川, 沈飞, 等. 炸药非理想爆轰能量释放与能量利用的关系[J]. 火炸药学报,2011,34(2):44-46.
SONG P, XIAO C, SHEN F, et al. Relationship of energy release and utilization of non-ideal detonation of explosive[J]. Chinese Journal of Explosives & Propellants, 2011, 34(2):44-46.
[2]WATT S D,SHARPE G J, FALLE S A E G.A streamline approach to steady non-ideal detonation theory[C]∥Proceedings of the 14th International Symposium on Detonation.Coeurd' Alene,Idaho,2010.
[3]薛仲卿, 胡双启, 曹雄. 约束条件对异形传爆药柱起爆能力影响的数值模拟[J]. 中北大学学报(自然科学版), 2015, 36(6):677-681,695.
XUE Z Q, HU S Q, CAO X. Numerical simulation of the influence of constraints on initiating capacity of the specialshaped booster pellet[J]. Journal of North University of China (Natural Science Edition), 2015, 36(6):677-681,695.
[4]陈卫东, 张忠, 刘家良. 破片对屏蔽炸药冲击起爆的数值模拟和分析[J]. 兵工学报, 2009, 30(9):1187-1191.
CHEN W D, ZHANG Z, LIU J L. Numerical simulation and analysis of shock initiation of shielded explosive impacted by fragments[J]. Acta Armamentarii, 2009, 30(9):1187-1191.
[5]吴艳红. 非均质凝聚态炸药冲击波临界起爆现象研究[D]. 长沙:湖南大学, 2006.
[6]张忠, 陈卫东, 杨文淼. 非均质固体炸药冲击起爆的物质点法[J]. 爆炸与冲击, 2011, 31(1):25-30.
ZHANG Z, CHEN W D, YANG W M. The material point method for shock-to-detonation transition of heterogeous solid explosive[J]. Explosion and Shock Waves, 2011, 31(1):25-30.
[7]李志鹏, 龙新平, 黄毅民, 等. 用组合式电磁粒子速度计研究JOB-9003炸药的冲击起爆过程[J]. 爆炸与冲击, 2006, 26(3):269-272.
LI Z P, LONG X P, HUANG Y M, et al. Electromagnetic gauge measurements of shock initiating JOB-9003 explosive[J]. Explosion and Shock Waves, 2006, 26(3):269-272.
[8]陈朗, 刘群, 伍俊英. 受热炸药的冲击起爆特征[J]. 爆炸与冲击, 2013, 33(1):21-28.
CHEN L, LIU Q, WU J Y. On shock initiation of heated explosives[J]. Explosion and Shock Waves, 2013, 33(1):21-28.
[9]温丽晶, 段卓平, 张震宇, 等. 不同加载压力下炸药冲击起爆过程实验和数值模拟研究[J]. 兵工学报, 2013, 34(3):283-288.
WEN L J, DUAN Z P, ZHANG Z Y, et al. Experimental and numerical study on the shock initiation of PBXC03 explosive under the different loading pressure[J]. Acta Armamentarii, 2013, 34(3): 283-288.
[10]李硕, 袁俊明, 刘玉存, 等. 聚黑-14C的传爆装置冲击起爆实验及数值模拟[J]. 火炸药学报, 2016, 39(6):63-68,79.
LI S, YUAN J M, LIU Y C, et al. Experiment and numerical simulation of shock initiation of JH-14C detonation device[J]. Chinese Journal of Explosives & Propellants, 2016, 39(6):63-68,79.
[11]张涛, 谷岩, 赵继波, 等. 新型高能钝感炸药JBO-9X在较高冲击压力下冲击起爆过程的实验研究[J]. 火炸药学报, 2016, 39(1):28-33.
ZHANG T, GU Y, ZHAO J B, et al. Experimental study on sbock initiation process of a new insensitive high explosive JBO-9X under high impact pressure[J]. Chinese Journal of Explosives & Propellants, 2016, 39(1):28-33.
[12]白志玲, 段卓平, 景莉, 等. 飞片冲击起爆高能钝感高聚物粘结炸药的实验研究[J]. 兵工学报, 2016, 37(8):1464-1468.
BAI Z L, DUAN Z P, JING L, et al. Experimental research on initiation of insensitive high energy plastic bonded explosives by flyer impact[J]. Acta Armamentarii, 2016, 37(8):1464-1468.
[13]李金河, 傅华, 赵继波, 等. 用电磁粒子速度计实验研究一种TATB基钝感炸药的冲击响应[J]. 火炸药学报, 2016, 39(6):58-62.
LI J H, FU H, ZHAO J B, et al. Experimental study on the shock response of a TATB-based insensitive explosive with electromagnetic particle velocity gauge[J]. Chinese Journal of Explosives & Propellants, 2016, 39(6):58-62.
[14]沈飞,王辉,袁建飞,等. RDX基含铝炸药不同尺寸的圆筒试验及数值模拟[J]. 含能材料, 2013, 21(6):777-780.
SHEN F, WANG H, YUAN J F, et al. Different diameter cylinder tests and numerical simulation of RDX based aluminized explosive[J]. Chinese Journal of Energetic Materials, 2013, 21(6):777-780.
[15]赵娟,冯晓军,徐洪涛,等. FOX-7和RDX基含铝炸药的冲击起爆特性[J]. 火炸药学报, 2016, 39(4):42-45,50.
ZHAO J, FENG X J, XU H T, et al. Shock initiation characteristics of FOX-7 and RDX based aluminized explosive[J]. Chinese Journal of Explosives & Propellants, 2016, 39(4):42-45,50.

相似文献/References:

[1]冯博,王晓峰,冯晓军,等.HMX基含铝炸药铝粉反应率的估算[J].爆破器材,2013,42(04):20.[doi:10.3969/j.issn.1001-8352.2013.04.005]
 FENG Bo,WANG Xiaofeng,FENG Xiaojun,et al.Reaction Rate Evaluation on the Aluminum Powder in HMXbased Aluminized Explosives[J].EXPLOSIVE MATERIALS,2013,42(01):20.[doi:10.3969/j.issn.1001-8352.2013.04.005]
[2]沈盼盼①,杜富贵②,刘祖亮①.超细DADNBF的性能研究[J].爆破器材,2014,43(01):19.[doi:10.3969/j.issn.1001-8352.2014.01.004]
 SHEN Panpan,DU Fugui,LIU Zuliang.Properties Research of Ultrafine DADNBF[J].EXPLOSIVE MATERIALS,2014,43(01):19.[doi:10.3969/j.issn.1001-8352.2014.01.004]
[3]王利侠①,周涛①,贺海民①,等.聚能射流引爆屏蔽B炸药的数值模拟及试验[J].爆破器材,2015,44(05):56.[doi:10.3969/j.issn.1001-8352.2015.05.013]
 WANG Lixia,ZHOU Tao,HE Haimin,et al.Numerical Simulation and Experimental Investigation of Initiation of Shielded Composition B Impacted by Shaped Charge Jet[J].EXPLOSIVE MATERIALS,2015,44(01):56.[doi:10.3969/j.issn.1001-8352.2015.05.013]
[4]刘鹏①,王雨时①,闻泉①,等.基于输出特性仿真的引信传爆管结构优化[J].爆破器材,2016,45(05):23.[doi:10.3969/j.issn.1001-8352.2016.05.005]
 LIU Peng,WANG Yushi,WEN Quan,et al.Structural Optimization of Fuze Booster Based on Simulation of Its Output Characteristics[J].EXPLOSIVE MATERIALS,2016,45(01):23.[doi:10.3969/j.issn.1001-8352.2016.05.005]
[5]王敏,龙源,钟明寿,等.乳化炸药线型切割器对薄壳弹药销毁效果的数值模拟研究[J].爆破器材,2018,47(02):39.[doi:10.3969/j.issn.1001-8352.2018.02.008]
 WANG Min,LONG Yuan,ZHONG Mingshou,et al.Numerical Simulation of Destruction Efficiency of Linear Shaped Charge Cutter with Emulsion Explosive on Thin Shell Ammunition[J].EXPLOSIVE MATERIALS,2018,47(01):39.[doi:10.3969/j.issn.1001-8352.2018.02.008]
[6]封雪松,冯博,赵娟,等.AP对RDX基含铝炸药爆轰性能影响研究[J].爆破器材,2019,48(05):46.[doi:10.3969/j.issn.1001-8352.2019.05.009]
 FENG Xuesong,FENG Bo,ZHAO Juan,et al.Effect of AP on Detonation Property of RDX-based Aluminized Explosive[J].EXPLOSIVE MATERIALS,2019,48(01):46.[doi:10.3969/j.issn.1001-8352.2019.05.009]
[7]戴国诚①,贾鑫①,黄正祥①,等.破片头部系数对TNT冲击起爆临界速度影响规律研究[J].爆破器材,2020,49(02):34.[doi:10.3969/j.issn.1001-8352.2020.02.006]
 DAI Guocheng,JIA Xin,HUANG Zhengxiang,et al.Influence of Fragment Head Coefficient on the Critical Velocity of Shock Initiation of TNT[J].EXPLOSIVE MATERIALS,2020,49(01):34.[doi:10.3969/j.issn.1001-8352.2020.02.006]
[8]黄炳耀,白桥栋,王茂杰,等.累积损伤对B炸药冲击起爆影响的仿真研究[J].爆破器材,2024,53(02):13.[doi:10.3969/j.issn.1001-8352.2024.02.003]
 HUANG Bingyao,BAI Qiaodong,WANG Maojie,et al.Simulation Study on the Effect of Cumulative Damage on the Shock Initiation of Composition B[J].EXPLOSIVE MATERIALS,2024,53(01):13.[doi:10.3969/j.issn.1001-8352.2024.02.003]

备注/Memo

备注/Memo:
收稿日期:2020-06-14
第一作者:赵娟(1988~),女,硕士,工程师,研究方向为炸药爆轰性能及爆轰化学反应研究。E-mail: canghaiyisu6636@163.com
更新日期/Last Update: 2021-01-21