[1]黄韵①,王旭①,徐森①②,等.HMX基推进剂临界起爆压力的研究[J].爆破器材,2020,49(01):24-39.[doi:10.3969/j.issn.1001-8352.2020.01.007]
 HUANG Yun,WANG Xu,XU Sen,et al.Study on Critical Initiation Pressure of HMX-base Propellant[J].EXPLOSIVE MATERIALS,2020,49(01):24-39.[doi:10.3969/j.issn.1001-8352.2020.01.007]
点击复制

HMX基推进剂临界起爆压力的研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
49
期数:
2020年01
页码:
24-39
栏目:
爆炸材料
出版日期:
2020-01-20

文章信息/Info

Title:
Study on Critical Initiation Pressure of HMX-base Propellant
文章编号:
5385
作者:
黄韵王旭徐森①②刘大斌吴越①③
①南京理工大学化工学院(江苏南京, 210094)
②国家民用爆破器材质量监督检验中心(江苏南京,210094)
③贵州省贵安新区公安局(贵州贵阳,550003)
Author(s):
HUANG Yun WANG Xu XU Sen①② LIU Dabin WU Yue①③
① School of Chemical Engineering, Nanjing University of Science and Technology ( Jiangsu Nanjing, 210094)
② Nanjing Quality Supervision Testing Center for Industrial Explosive Materials ( Jiangsu Nanjing, 210094)
③Guian New District Public Security Bureau of Guizhou Province (Guizhou Guiyang, 550003)
关键词:
临界起爆压力隔板试验HMX复合推进剂
Keywords:
critical initiation pressure scale gap test (SGT) HMX composite propellant
分类号:
TJ55
DOI:
10.3969/j.issn.1001-8352.2020.01.007
文献标志码:
A
摘要:
为了研究HMX含量、粒径和形貌对复合推进剂临界起爆压力的影响,对设计出的7组配方开展了临界起爆条件试验,计算了相应的冲击波临界起爆压力。结果表明,HMX质量分数分别为5%、10%、15%时,推进剂的临界起爆压力分别是15.40、 7.99、 7.55 GPa;HMX质量分数相同,中位粒径分别为5.432、 6.482、 9.121、 136.800 μm时,推进剂的临界起爆压力分别是7.99、 7.99、 9.42 ~15.40、 9.04 ~15.40 GPa;当HMX的颗粒分布跨度较大时,临界起爆压力为7.99 GPa。随着HMX的含量在一定范围内增高,复合推进剂的临界起爆压力减小;随着HMX的中位粒径增大,复合推进剂的临界起爆压力增大;颗粒的类球形结构能大幅提高临界起爆压力。
Abstract:
Seven types of HMX samples were tested at their critical initiation conditions and corresponding critical initiation pressures of shockwave were calculated to analyze the influence of the content, particle size and appearance of HMX on the critical initiation pressure of composite propellant. The results show that the critical initiation pressures are 15.40, 7.99 GPa and 7.55 GPa at the HMX content of 5%, 10% and 15%, respectively; the critical initiation pressures at a fixed amount of HMX are 7.99, 7.99, 9.42-15.40 GPa and 9.04-15.40 GPa at various medium particle sizes of 5.432, 6.482, 9.121 μm and 136.800 μm, respectively. The critical initiation pressure is 7.99 GPa when HMX shows a large particle distribution. It shows that the critical initiation pressure decreases with the increase of HMX content in a certain range; the critical initiation pressure increases with the increase of the medium particle size of HMX; and spherical-like structure of the particle has a great influence on the critical initiation pressure.

参考文献/References:

[1]俞统昌,王晓峰,王建灵.火炸药危险等级分级程序分析[J].火炸药学报,2006,29(1):10-13,16.
YU T C, WANG X F, WANG J L. Hazard classification procedures for explosive and propellant[J].Chinese Journal of Explosives & Propellants,2006,29(1):10-13,16.
[2]王晓峰.军用混合炸药的发展趋势[J].火炸药学报,2011,34(4):1-4,9.
WANG X F. Developmental trends in military composite explosive[J]. Chinese Journal of Explosives & Propellants,2011,34(4):1-4,9.
[3]秦能,廖林泉,范红杰,等.几种典型固体推进剂的危险性能实验研究[J].含能材料,2010,18(3):324-329.
QIN N, LIAO L Q, FAN H J,et al. Sensitivity performances of several typicalcomposite propellants[J].Chinese Journal of Energetic Materials,2010,18(3):324-329.
[4]李洪珍,康彬,李金山,等. RDX晶体特性对冲击感度的影响规律[J].含能材料,2010,18(5):487-491.
LI H Z, KANG B, LI J S,et al. Effects of RDX crystal characteristics on shock sensitivities[J]. Chinese Journal of Energetic Materials ,2010,18(5):487-491.
[5]柴涛,张景林.HMX粒度、粒度级配对混合传爆药性能影响的研究[J].中国安全科学学报, 2000,10(3):71-74.
CHAI T,ZHANG J L.Effects of particle size and gradation of HMX on the shock sensitivity and the output of explosive compositions based on HMX [J]. China Safety Science Journal,2000,10(3):71-74.
[6]王作山,郑敏,刘玉存.HMX粒度对HMX/F2641冲击波起爆感度的影响研究[J].华北工学院学报,1999,20(2):171-173.
WANG Z S, ZHENG M, LIU Y C.The influence of HMX granular on the shock sensitivity of HMX /F2641 [J]. Journal of North China Institute of Technology , 1999,20(2):171-173.
[7]KHASAINOV B A , BORISOV A A , ERMOLAEV B S, et al. Two-phase visco-plastic model of shock intiation of detonation in high density pressed explosives[C]//Proceeding of the 7th Symposium (International) on Detonation.1981:435-447.
[8]FREY R B.Cavity collapse in energetic materials[C]//Proceeding of the 8th Symposium (International) on Detonation.1985:385-395.
[9]PRIEE D.Effect of partiele size on the shock sensitivity of porous HE[J].Journal of Energetic Materials,1988,6(3/4):283-317.
[10]CAMPBELL A W, DAVIS W C, RAMSAY J B, et al.Shock initiation of solid explosives[J].The Physics of Fluids, 1961,4(4) :511.
[11]DINEGAR R H, ROEHESTER R H, MULLLEAN M S.The effect of specific surface on the shock sensitivity of pressed granular PETN[J].Explosivstolfe, 1963 (9) :1.
[12]SCOTT C L.Effect of particle size on shock initiation of PETN, RDX and Tetryl[C]//Proceeding of the 5th Symposium (International) on Detonation.1972:259-266.
[13]MOULARD H.Particular aspect of the explosive particle size effect on shock sensitivity of cast PBX formulations[C]//Proceedings of the 9th Symposium (International) on Detonation. Portland,1989:18-24.
[14]张超,秦能,李宏岩,等.改性双基推进剂冲击波感度研究[J].火工品,2015(2):14-17.
ZHANG C,QIN N,LI H Y,et al. Study on the shock wave sensitivity of modified double base solid propellants [J].Initiators & Pyrotechnics,2015(2):14-17.
[15]徐森,刘大斌,彭金华,等.药柱冲击波在有机玻璃中的衰减特性研究[J].高压物理学报,2010,24(6):431-437.
XU S,LIU D B,PENG J H,et al.Study on the shock wave attenuation of the booster charge in the PMMA gap[J]. Chinese Journal of High Pressure Physics,2010,24(6):431-437.
[16]黄寅生.炸药理论[M]. 北京:北京理工大学出版社,2016. HUANG Y S. Explosive theory [M].Beijing: Beijing Institute of Technology Press,2016.
[17]刘玉存,王作山,柴涛,等.HMX粒度及其级配对塑料粘结炸药冲击波感度和爆炸输出能量的影响[J].兵工学报,2000,21(4):357-360.
LIU Y C,WANG Z S,CHAI T,et al. Influence of HMX particle size and gradation on the shock sensitivity and output of a PBX explosive[J].Acta Armamentarii, 2000,21(4):357-360.

相似文献/References:

[1]韩慧雯①,刘静平①②,王旭①,等.高温过饱和硝酸铵溶液的爆炸危险性分析[J].爆破器材,2023,52(01):37.[doi:10.3969/j.issn.1001-8352.2023.01.007]
 HAN Huiwen,LIU Jingping,WANG Xu,et al.Explosion Risk Analysis of Supersaturated at High Temperature Ammonium Nitrate Solution[J].EXPLOSIVE MATERIALS,2023,52(01):37.[doi:10.3969/j.issn.1001-8352.2023.01.007]

备注/Memo

备注/Memo:
收稿日期:2019-01-28
基金项目:国家高技术研究发展计划(863计划)资助项目(2006AA09Z349);国家自然科学基金资助项目(50276042)
第一作者:黄韵(1994-),男,硕士研究生,主要从事固体推进剂低易损性能研究。E-mail:2653538341@qq.com
通信作者:徐森(1981-),男,硕导,副教授,主要从事含能材料的制造与应用、含能材料安全技术和危险品分类研究。E-mail:xusen@njust.edu.cn
更新日期/Last Update: 2020-01-20