[1]邵先锋①,赵捍东①,朱福林②,等.爆炸冲击波作用于便携式防爆墙的绕射规律[J].爆破器材,2017,46(06):6-10,16.[doi:10.3969/j.issn.1001-8352.2017.06.002]
 SHAO Xianfeng,ZHAO Handong,ZHU Fulin,et al.Diffraction Laws of Explosion Shock Waves Acting on Portable Explosion-proof Walls[J].EXPLOSIVE MATERIALS,2017,46(06):6-10,16.[doi:10.3969/j.issn.1001-8352.2017.06.002]
点击复制

爆炸冲击波作用于便携式防爆墙的绕射规律()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
46
期数:
2017年06
页码:
6-10,16
栏目:
基础理论
出版日期:
2017-11-15

文章信息/Info

Title:
Diffraction Laws of Explosion Shock Waves Acting on Portable Explosion-proof Walls
文章编号:
5198
作者:
邵先锋赵捍东朱福林吕晓明吴凡达
①中北大学机电工程学院(山西太原,030051)
②四川航天电子设备研究所(四川成都, 611900)
③中国人民解放军军械研究所(河北石家庄,050000)
Author(s):
SHAO Xianfeng ZHAO Handong ZHU Fulin Lǔ Xiaoming WU Fanda
① School of Mechanical and Electrical Engineering, North University of China (Shanxi Taiyuan, 030051)
② Sichuan Aerospace Electronic Equipment Research Institute (Sichuan Chengdu, 611900)
③ Ordnance Research Institute of PLA (Hebei Shijiazhuang, 050000)
关键词:
便携式防爆墙爆炸冲击波环流超压绕射规律数值模拟
Keywords:
explosion-proof walls shock waves diffracted overpressure diffraction laws numerical simulation
分类号:
O383
DOI:
10.3969/j.issn.1001-8352.2017.06.002
文献标志码:
A
摘要:
为研究爆炸冲击波作用于便携式防爆墙的绕射规律,利用LS/DYNA软件,采用欧拉耦合的方法,分析了TNT药量不同爆距相同、TNT药量相同爆距不同以及TNT药量相同墙厚不同的条件下墙体对环流超压的影响规律,且拟合出了不同TNT药量时墙后超压峰值公式,并通过防爆墙墙前、墙后超压值与已知试验值对比,验证了计算模型的正确性。结果表明:环流超压峰值随着TNT药量的增加而增加,随着墙体厚度的增加而减少,且其超压峰值出现在墙后约2倍墙高位置处;当爆距大于2.4 m时,环流超压的峰值先递增、后递减,最大环流超压发生在约2倍墙高位置;当爆距小于2.4 m时,最大环流超压向墙体移动,距离墙体后面1.0 m左右。验证了其绕射规律与已知研究结果的一致性。
Abstract:
In order to study the diffraction laws of blast shock waves acting on portable flexible explosive-proof walls, LS/DYNA software was used with the Euler coupling algorithm to analyze effect of the portable explosive-proof wall on diffracted overpressure under conditions of different charge in the same distance, same charge in different distance and same charge in different wall thickness. Simulation with different TNT charges established the formula to calculate peak overpressure near the back wall, and the validity of the calculation model was verified by comparing the reflection overpressure at the front wall and diffraction overpressure at the back wall with experimental data. Results show that the diffraction peak overpressure is positively correlated with the charge, and is negatively correlated with explosion-proof wall thickness; the peak overpressure location is away from the back wall by about 2 times the height of the wall.When explosion distance is more than 2.4 meters, the diffraction peak overpressure at the back wall increases initially, reach to the maximum value at the distance of about 2 times the height of the wall and then decreases. When explosion distance is less than 2.4 meters, the peak overpressure at the back wall appears at a position about 1 meter away from the wall.The diffraction law is coincident with the experimental results.

参考文献/References:

[1]严东晋,丁娜娜.建筑物外部防爆墙的研究应用现状[C]//第5届全国工程结构安全防护学术会议论文集.南京,2005.

[2]刘飞,任辉启,王肖均,等.抗爆墙在地面重要建筑物反爆炸恐怖袭击中的应用[J].防护工程,2004,26(6):20-25.
[3]伍俊,刘晶波,杜义欣.汽车炸弹爆炸下装配式防爆墙弹塑性动力计算与数值分析[J].防灾减灾工程学报,2007,27(4):394-400.
WU J,LIU J B,DU Y X.Elastic-plastic dynamic calculation and numerical analysis of assembling blast resistant wall under effect of vehicle bombs[J].Journal of Disaster Prevention and Mitigation Engineering,2007,27(4):394-400.
[4]苏倩倩.带防爆墙网壳的抗爆性能与爆炸响应简化计算方法研究[D].哈尔滨:哈尔滨工业大学,2016. SU Q Q. Defense performance of reticulated domes with explosion-protection wall and simplified calculation method for explosive response[D].Harbin:Harbin Institute of Technology,2016.
[5]SCHERBATIUK K,RATTANAWANGCHAROEN N.Experimental testing and numerical modeling of soil-filled concertainer walls[J].Engineering Structures,2008,30(12):3545-3554.
[6]张艳明,罗兴柏,刘国庆,等.地面弹药堆垛设置隔爆墙试验研究[J].爆破器材,2014,43(3): 52-56.
ZHANG Y M,LUO X B,LIU G Q,et al.Experimental research on the explosive-proof walls setting in front of the ammunition stack on ground[J].Explosive Materials,2014,43(3):52-56.
[7]张志刚,李明钊,葛涛,等.新型拼装式防爆墙研究的若干进展[J].爆破,2015,32(3):176-182.ZHANG Z G,LI M Z,GE T,et al. Research progress in new kind of assembling anti-blast wall[J].Blasting,2015,32(3):176-182.
[8]蒋志刚,孔晓鹏,谭清华,等.土工防爆墙倾覆稳定性分析[J].振动与冲击,2010,29(10): 86-90.
JIANG Z G,KONG X P,TAN Q H, et al.Overturn stability analysis of geotechnical explosive-proof walls[J].Journal of Vibration and Shock,2010, 29(10): 86-90.
[9]朱福林.野战环境下便携式防爆墙抗爆性能研究[D].太原:中北大学,2017:27-30.
ZHU F L.Research on antiblast performance of portable explosion-proof walls in the field environment[D].Taiyuan: North University of China,2017:27-30.
[10]陈鑫,高轩能.炸药近地爆炸的数值模拟及影响参数的分析[J].华侨大学学报(自然科学版), 2014,35(5): 570-575.
CHEN X,GAO X N.Numerical simulation and analysis of influence parameters for explosions near ground[J].Journal of Huaqiao University(Natural Science),2014, 35(5): 570-575.
[11]年鑫哲,张耀,孙传怀,等.空气冲击波作用于柔性防爆墙的透射和绕射效应分析[J].工程力学,2015,32(3):241-248,256.
NIAN X Z,ZHANG Y,SUN C H,et al.Analysis of transmission and diffraction effects of air shock waves upon flexible explosion-proof walls[J].Engineering Mechanics,2015,32(3):241-248,256.
[12]宁建国,王成,马天宝.爆炸与冲击动力学[M].北京:国防工业出版社,2010.NING J G,WANG C,MA T B.Explosion and shock dynamics[M].Beijing:National Defense Industry Press,2010.
[13]HENRYCH J,ABRAHAMSON G R.The dynamics of explosion and its use[M].Amsterdam:Elsevier Scientific Pub.Co.,1979.
[14]WU C Q,HAO H.Modeling of simultaneous ground shock and air blast pressure on nearby structures from surface explosions [J].International Journal of Impact Engineering,2005,31(6):699-717.
[15]李翼祺,马素贞.爆炸力学[M].北京:科学出版社,1959:260.
[16]张国伟.终点效应及其应用技术[M].北京:国防工业出版社,2006.
[17]穆朝民,任启辉,李永池,等.爆炸冲击波作用于墙体及对墙体绕射的实验研究[J].实验力学,2008,23(2):169-174.
MU C M,REN Q H,LI Y C,et al.Experimental study of blast wave reflection and diffraction on a shelter wall[J].Journal of Experimental Mechanics,2008,23(2):169-174.

相似文献/References:

[1]王启睿,张晓忠,孔福利,等.坑道中木格栅消波器的消波效应试验研究[J].爆破器材,2011,40(01):1.
 WANG Qirui,ZHANG Xiaozhong,KONG Fuli,et al.Test Research of Shockwave Attenuation Effect about Wooden Lattice Machine in Tunnel[J].EXPLOSIVE MATERIALS,2011,40(06):1.
[2]张朋军,何洋扬,赵红宇,等.大当量炸药齐爆远区安全性分析[J].爆破器材,2009,38(02):32.
 ZHANG Pengjun,HE Yangyang,ZHAO Hongyu,et al.Far-area Blasting Safety Analysis of Big Amount Dynamite[J].EXPLOSIVE MATERIALS,2009,38(06):32.
[3]成凤生,宋浦,顾晓辉,等.TNT装药爆炸波在刚性平面上方传播反射的数值研究[J].爆破器材,2011,40(04):1.
 CHENG Fengsheng,SONG Pu,GU Xiaohui,et al.Numerical Investigation into the Propagation and Reflection of TNT Blast Wave above Rigid Plane[J].EXPLOSIVE MATERIALS,2011,40(06):1.
[4]于文华①②,张亚栋①.爆炸冲击波在坑道内传播规律研究[J].爆破器材,2013,42(03):1.[doi:10.3969/j.issn.1001-8352.2013.03.001]
 YU Wenhua,ZHANG Yadong.Study on Propagation Laws of Explosion Shock Wave in Tunnels[J].EXPLOSIVE MATERIALS,2013,42(06):1.[doi:10.3969/j.issn.1001-8352.2013.03.001]
[5]穆朝民①,任辉启②,李永池①,等.爆炸冲击波在复杂坑道内传播规律的数值研究[J].爆破器材,2008,37(05):1.
 Mu Chaomin,Ren Huiqi,Li Yongchi,et al.Numerical Investigation on Blast Shock Wave Propagation in the Complex Tunnel[J].EXPLOSIVE MATERIALS,2008,37(06):1.
[6]崔小杰①,张孙嘉②,张国伟①.基于AUTODYN的复合防护结构数值模拟[J].爆破器材,2019,48(01):52.[doi:10.3969/j.issn.1001-8352.2019.01.010]
 CUI Xiaojie,ZHANG Sunjia,ZHANG Guowei.Numerical Simulation of Composite Protective Structure Based on AUTODYN[J].EXPLOSIVE MATERIALS,2019,48(06):52.[doi:10.3969/j.issn.1001-8352.2019.01.010]
[7]张玉磊①,袁建飞①,蒋海燕①,等.TNT近地爆炸三波点高度预测及验证[J].爆破器材,2020,49(01):29.[doi:10.3969/j.issn.1001-8352.2020.01.006]
 ZHANG Yulei,YUAN Jianfei,JIANG Haiyan,et al.Prediction and Verification of Triple Point Height of Near Ground TNT Explosion[J].EXPLOSIVE MATERIALS,2020,49(06):29.[doi:10.3969/j.issn.1001-8352.2020.01.006]
[8]张波涛①,岳亚军②,姜林②.悬挂式矩形水墙对爆炸冲击波削减效果的实验研究[J].爆破器材,2024,53(02):34.[doi:10.3969/j.issn.1001-8352.2024.02.006]
 ZHANG Botao,YUE Yajun,JIANG Lin.Experimental Study on the Reduction Effect of Suspended Rectangular Water Walls on Explosion Shock Waves[J].EXPLOSIVE MATERIALS,2024,53(06):34.[doi:10.3969/j.issn.1001-8352.2024.02.006]

备注/Memo

备注/Memo:
收稿日期:2017-07-23
作者简介:邵先锋(1990-),男,硕士研究生,主要从事弹药毁伤技术研究。E-mail:641808227@qq.com
通信作者:赵捍东(1960-),男,教授,主要从事弹药毁伤技术研究。E-mail:hd_zhao@nuc.edu.cn
更新日期/Last Update: 2017-11-14