[1]杨学斌,秦亮,徐子帅,等.三硝基间苯三酚中试制备工艺研究[J].爆破器材,2023,52(01):17-22.[doi:10.3969/j.issn.1001-8352.2023.01.003]
 YANG Xuebin,QIN Liang,XU Zishuai,et al.Research on Pilot Scale Preparation Technology of Trinitro Phloroglucinol[J].EXPLOSIVE MATERIALS,2023,52(01):17-22.[doi:10.3969/j.issn.1001-8352.2023.01.003]
点击复制

三硝基间苯三酚中试制备工艺研究()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
52
期数:
2023年01
页码:
17-22
栏目:
基础理论
出版日期:
2023-01-08

文章信息/Info

Title:
Research on Pilot Scale Preparation Technology of Trinitro Phloroglucinol
文章编号:
5721
作者:
杨学斌秦亮徐子帅晁慧胡显娣许吉虎
甘肃银光化学工业集团有限公司 (甘肃白银,730900)
Author(s):
YANG Xuebin QIN Liang XU Zishuai CHAO Hui HU Xiandi XU Jihu
Gansu Yinguang Chemical Industry Group Co., Ltd. (Gansu Baiyin, 730900)
关键词:
无氯TATB硝化三硝基间苯三酚中试放大
Keywords:
chlorine free TATB nitrification trinitro phloroglucinol (TNPG) pilot scale amplification
分类号:
TQ560.6
DOI:
10.3969/j.issn.1001-8352.2023.01.003
文献标志码:
A
摘要:
作为间苯三酚(PG)法合成无氯三氨基三硝基苯(TATB)的重要中间体,三硝基间苯三酚(TNPG)的得率、纯度和后处理方式对于后续的烷基化和胺化反应的顺利进行具有重要影响。为了使PG法合成TATB能够实现进一步的工程化推广应用,结合国内外相关研究报道对TNPG的合成工艺进行了千克级的放大和优化。采用单因素控制变量法探究了硝化剂种类、底物浓度比、反应温度、反应时间和后处理对TNPG得率和纯度的影响。结果表明:以硝硫混酸为硝化剂时,较优的工艺条件为底物浓度比m(PG)∶V(浓硫酸)=1∶18、反应温度-5~0 ℃、反应时间120 min,得率92%,具有反应时间快、硫酸消耗量少的优点;对于硝酸铵硝酸硝化体系,采用一次性连续加酸工艺可以显著提高TNPG的得率,较优的工艺条件为底物浓度比m(PG)∶V(浓硫酸)=1∶20、反应温度-10~5 ℃、反应时间180 min,得率94%,具有控温区间宽、反应条件温和、得率高的优势。说明了这两种硝化剂均具有较高的推广应用价值。热分解温度测试和机械感度测试表明:TNPG的分解放热峰为216.1 ℃;撞击感度和摩擦感度分别为40%和64%。
Abstract:
As an important intermediate in the synthesis of chlorine free triaminotrinitrobenzene (TATB) by phloroglucinol (PG) method, the yield, purity and posttreatment of trinitro phloroglucinol (TNPG) have an important impact on the subsequent alkylation and amination reactions. In order to realize the further engineering popularization and application of the synthesis of TATB by PG method, combined with the relevant research reports at home and abroad, the synthesis process of TNPG was amplified and optimized at the kilogram level. The effects of nitrating agent type, substrate concentration ratio, reaction temperature, reaction time and post-treatment on the yield and purity of TNPG were studied by single factor control variable method. The results show that when nitrate sulfur mixed acid is used as nitrating agent, the better process conditions are as follows: substrate concentration ratio m(PG)∶V?(concentrated sulfuric acid) = 1∶18, reaction temperature is -5 ℃ to 0 ℃, reaction time is 120 min, and yield is 92%. It has the advantages of fast reaction time and less consumption of sulfuric acid. For ammonium nitrate nitric acid nitration system, the one¨time continuous acid adding process can significantly improve the yield of TNPG. The better process conditions are: substrate concentration ratio m?(PG)∶V?(concentrated sulfuric acid) = 1∶20, reaction temperature is -10 ℃ to 5 ℃, reaction time is 180 min, and yield is 94%. It has the advantages of wide temperature control range, mild reaction conditions and high yield, which shows that the two nitrating agents have high popularization and application value. Thermal decomposition temperature test and mechanical sensitivity test show that the decomposition exothermic peak of TNPG is 216.1 ℃, and the impact sensitivity and friction sensitivity are 40% and 64%, respectively.

参考文献/References:

[1]BELLAMY A J, WARD S J, GOLDING P. A New synthetic route to 1,3,5-triamino-2,4,6-trinitrobenzene (TATB)[J]. Propellants, Explosives, Pyrotechnics, 2002, 27(2): 49-58.
[2]盛宽. 1,3,5-三氨基2,4,6-三硝基苯的合成[D]. 南京: 南京理工大学, 2009.
[3]周新利. 无氯TATB 的合成进展[J]. 火炸药学报, 2006, 29(1): 26-28.
ZHOU X L. Progress in the synthesis of TATB free from Chloride[J]. Chinese Journal of Explosives & Propellants, 2006, 29(1): 26-28.
[4]STRAESSLER N A, VELARDE S P. Methods of producing 1,3,5-triamino-2,4,6-trinitrobenzene: US 7910776 B2 [P]. 2011-03-22.
[5]李明豪.高品质无氯TATB的绿色合成研究[D]. 南京: 南京理工大学, 2013.
LI M H. Studies on green synthesis of high quality TATB free from chloride[D]. Nanjing: Nanjing University of Science & Technology, 2013.
[6]马晓明, 李斌栋, 吕春绪, 等. 无氯TATB 的合成及其热分解动力学[J]. 火炸药学报, 2009, 32(6): 24-27.
MA X M, LI B D, L- C X, et al. Synthesis and thermal decomposition kinetics of TATB without chloride [J]. Chinese Journal of Explosives & Propellants, 2009, 32(6): 24-27.
[7]ZHANG L Y, HUANG J L, MA Q. Study on preparation technology and process scale-up of trinitro phloroglucinol[C]// Proceedings of the Second National Symposium on Hazardous Substances and Safety Emergency Technology. Chengdu, 2013: 80-84.
[8]常婷. 无氯TATB的合成工艺及其应用研究[D]. 南京: 南京理工大学, 2018.
CHANG T. Study on synthesis technology of TATB without chlorine and its application [D]. Nanjing: Nanjing University of Science & Technology,2018.
[9]黄瑶, 刘康, 张松, 等. 间苯三酚合成TATB产品中副产物的鉴定及性能表征[J]. 火炸药学报, 2021, 44(1): 45-49.
HUANG Y,LIU K,ZHANG S,et al. Identification and performance characterization of by-product in TATB synthesized by phloroglucinol method [J]. Chinese Journal of Explosives & Propellants,2021, 44(1): 45-49.
[10]NANDI A K, KASAR S M, THANIGAIVELAN U, et al. Synthesis and characterization of ultrafine TATB[J]. Journal of Energetic Materials, 2007, 25(4): 213-231.
[11]LU T, CHEN F W. Multiwfn: a multifunctional wavefunction analyzer [J]. Journal of Computational Chemistry, 2012, 33(5): 580-592.
[12]MONDAL M A, MANDAL D, MITRA K. Yttrium nitrate mediated nitration of phenols at room temperature in glacial acetic acid [J]. Journal of Chemical Sciences, 2017, 129: 39-43.
[13]SUN H B, HUA R M, YIN Y W. Highly efficient nitration of phenolic compounds in solid phase or solution using Bi(NO3)3·5H2O as nitrating reagent [J]. The Journal of Organic Chemistry, 2005,70(22): 9071-9073.
[14]BOLZACCHINI E, BRUSCHI M, GALLIANI G, et al. The regiochemistry of the NO3-promoted gas phase nitration of toluene and phenol with NO2 [J]. Journal of Physical Organic Chemistry, 2010, 19(8/9): 570-578.
[15]DUCRY L, ROBERGE D M. Controlled autocatalytic nitration of phenol in a microreactor [J]. Angewandte Chemie, 2005, 44(48): 7972-7975.

相似文献/References:

[1]董岩①,刘祖亮①,苏强②,等.5,7-二氨基-4,6-二硝基苯并氧化呋咱的制备[J].爆破器材,2013,42(01):10.[doi:10.3969/j.issn.1001-8352.2013.01.003]
 DONG Yan,LIU Zuliang,SU Qiang,et al.Preparation of 5,7-diamino-4,6-dinitrobenzenfuroxan[J].EXPLOSIVE MATERIALS,2013,42(01):10.[doi:10.3969/j.issn.1001-8352.2013.01.003]
[2]周心龙,刘祖亮,成健,等.2,6-二乙酰氨基吡嗪-1-氧化物硝化反应研究[J].爆破器材,2014,43(04):16.[doi:10.3969/j.issn.1001-8352.2014.04.004]
 ZHOU Xinlong,LIU Zuliang,CHENG Jian,et al.Study on the Nitration Reaction of 2,6-Diacetamidopyrazine-1-Oxide[J].EXPLOSIVE MATERIALS,2014,43(01):16.[doi:10.3969/j.issn.1001-8352.2014.04.004]
[3]丁峰,陆婷婷,张丽洁,等.1,4,5,8-四硝基-1,4,5,8-四氮杂双环[4.4.0]癸烷合成工艺的改进[J].爆破器材,2016,45(04):18.[doi:10.3969/j.issn.10018352.2016.04.004]
 DING Feng,LU Tingting,ZHANG Lijie,et al.Improved Synthesis Technology of 1,4,5,8-Tetranitro-1,4,5,8-Tetraazabicyclo[4.4.0] Decalin[J].EXPLOSIVE MATERIALS,2016,45(01):18.[doi:10.3969/j.issn.10018352.2016.04.004]
[4]汪营磊,高福磊,丁峰,等.3,4-二硝基吡唑合成放大工艺研究[J].爆破器材,2018,47(05):35.[doi:10.3969/j.issn.1001-8352.2018.05.006]
 WANG Yinglei,GAO Fulei,DING Feng,et al.Study on the Up-sizing Synthesis Technology of 3, 4-Dinitropyrazole[J].EXPLOSIVE MATERIALS,2018,47(01):35.[doi:10.3969/j.issn.1001-8352.2018.05.006]

备注/Memo

备注/Memo:
收稿日期:2022-04-26
第一作者:杨学斌(1982-),工程师,主要从事含能材料工程放大方面的研究。E-mail: yangxuebin00@163.com
更新日期/Last Update: 2023-01-07