[1]毛立①,周星宇②,唐双凌②,等.空气中氮气或氩气浓度对锆粉尘层着火温度的影响[J].爆破器材,2021,50(05):8-13.[doi:10.3969/j.issn.1001-8352.2021.05.002]
 MAO Li,ZHOU Xingyu,TANG Shuangling,et al.Effect of Nitrogen or Argon Concentration in Air on Ignition Temperature of Zirconium Dust Layer[J].EXPLOSIVE MATERIALS,2021,50(05):8-13.[doi:10.3969/j.issn.1001-8352.2021.05.002]
点击复制

空气中氮气或氩气浓度对锆粉尘层着火温度的影响()
分享到:

《爆破器材》[ISSN:1001-8352/CN:32-1163/TJ]

卷:
50
期数:
2021年05
页码:
8-13
栏目:
基础理论
出版日期:
2021-10-05

文章信息/Info

Title:
Effect of Nitrogen or Argon Concentration in Air on Ignition Temperature of Zirconium Dust Layer
文章编号:
5565
作者:
毛立周星宇唐双凌黄寅生杨欣静宋晓鹏马健行
①南京理工大学化学与化工学院(江苏南京,210094)
②南京理工大学环境与生物工程学院(江苏南京,210094)
③中国核电工程有限公司(北京,100840)
Author(s):
MAO Li ZHOU Xingyu TANG Shuangling HUANG Yinsheng YANG Xinjing SONG Xiaopeng MA Jianxing
①School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②School of Environmental and Biological Engineering, Nanjing University of Science and Technology (Jiangsu Nanjing, 210094)
②China Nuclear Power Engineering Co., Ltd. (Beijing, 100840)
关键词:
锆粉粉尘层着火温度空气氮气氩气
Keywords:
zirconium powder dust layer ignition temperature air nitrogen argon
分类号:
O381;X932
DOI:
10.3969/j.issn.1001-8352.2021.05.002
文献标志码:
A
摘要:
为了探索抑制锆包壳剪切过程中锆粉着火的方法,采用粉尘层最低着火温度测定仪、红外热成像仪、真空手套箱等测定了不同粒径的锆粉尘层在空气和含不同浓度氮气、氩气的空气中的最低着火温度和火焰温度。结果得出:锆粉的中位粒径从2.4 μm升至71.7 μm,粉尘层最低着火温度从200 ℃升至390 ℃,表明粒径越小的锆粉着火敏感性越高;4种粒径的锆粉燃烧火焰最高温度都在1 776~1 913 ℃范围内,锆粉粒径较大时,燃烧的剧烈程度较低;氮气或氩气体积分数从60%~65%升至70% 85%时,锆粉尘层最低着火温度升至400 ℃,表明空气中高浓度的氮气或氩气对锆粉燃烧有抑制作用,且浓度越高,抑制作用越强,锆粉粒径越小,抑制效果越好。氩气的抑制效果强于氮气。
Abstract:
In order to explore the method of suppressing the ignition of zirconium powder in the shearing process of zirconium cladding, the minimum ignition temperature and flame temperature of zirconium dust layer with different particle sizes in air and air containing different concentrations of nitrogen and argon were measured by dust layer minimum ignition temperature tester, infrared thermal imager and vacuum glove box. Results show that when the median particle size of zirconium powder increases from 2.4 μm to 71.7 μm, the minimum ignition temperature of dust layer increases from 200 ℃ to 390 ℃, indicating that the smaller the particle size of zirconium powder is, the higher the ignition sensitivity is. The maximum combustion flame temperature of the four kinds of zirconium powder is in the range of 1 776-1 913 ℃, and the intensity of combustion is lower when the size of zirconium powder is larger. When the volume fraction of nitrogen and argon increases from 60%-65% to 70%-85%, the minimum ignition temperature of the zirconium dust layer rises to 400 ℃. It shows that high concentrations of nitrogen and argon have inhibition effect on the combustion of zirconium powder. The higher the concentration, the stronger the inhibition effect, and the smaller the size of zirconium powder, the better the inhibition effect. The inhibition effect of argon is stronger than that of nitrogen.

参考文献/References:

[1]中国有色金属工业协会专家委员会.中国锆、铪[M].北京:冶金工业出版社,2014:5-6.
[2]熊炳昆,温旺光,杨新民,等.锆铪冶金[M].北京:冶金工业出版社,2002:1-13, 45-46.
[3]熊炳昆,杨新民,罗方承,等.锆铪及其化合物应用[M].北京:冶金工业出版社,2002:192-216.
[4]熊炳昆.锆粉的制备与应用[J].稀有金属快报, 2005, 24(10): 49-51.
[5]杨胜强.粉尘防治理论及技术[M].徐州: 中国矿业大学出版社, 2007: 51-64.
[6]王梦蓉. Al Solutions公司金属粉尘爆炸事故[J].现代职业安全, 2014(9): 90-95.
[7]邓军,任旭刚,王秋红,等. 锆金属粉尘云的爆炸特性[J]. 爆炸与冲击, 2017, 37(3): 496-501.
DENG J, REN X G, WANG Q H, et al. Explosion characteristics of zirconium metal dust cloud [J].Explosion and Shock Waves, 2017, 37(3): 496-501.
[8]EWALD K H, ANSELMI-TAMBURINI U, MUNIR Z A. Combustion of zirconium powders in oxygen [J]. Materials Science and Engineering: A, 2000, 291(1/2):118-130.
[9]BADIOLA C, DREIZIN E L. Combustion of micron-sized particles of titanium and zirconium [J]. Proceedings of the Combustion Institute, 2013, 34(2):22372243.
[10]丁以斌,孙金华,何学超,等. 锆粉尘云的火焰传播特性[J]. 燃烧科学与技术,2010,16(4) : 353-357.
DING Y B, SUN J H, HE X C, et al. Flame propagation characteristic of zirconium particle cloud [J]. Journal of Combustion Science and Technology, 2010, 16(4): 353-357.
[11]丁以斌.锆粉云火焰传播特性的实验研究[D].合肥: 中国科学技术大学,2010.
DING Y B. Experimental study on flame propagation characteristics of zirconium particle cloud[D]. Hefei: University of Science and Technology of China,2010.
[12]CAO Y, SU H, GE L F, et al. Ignition sensitivity and flame propagation of zirconium powder clouds[J]. Journal of Hazardous Materials, 2018,365:413-420.
[13]苏浩,仲海霞,曹勇,等. 锆金属粉尘云最小点火能和最低着火温度的试验研究[J]. 爆破器材, 2019, 48(2): 25-31, 36.
SU H, ZHONG H X CAO Y, et al. Experimental investigation of the minimum ignition energy and the minimum ignition temperature of zirconium dust cloud [J]. Explosive Materials, 2019, 48(2):25-31, 36.
[14]任旭刚.锆粉尘爆炸特性及其抑爆的实验研究[D].西安:西安科技大学,2016.
REN X G. Experimental study on explosion characteristics and explosion suppressant of zirconium dust [D]. Xi’an: Xi’an University of Science and Technology, 2016.
[15]ELIAS E, HASAN D, NEKHAMKIN Y. Zirconium -ignition- in exposed fuel channel [J]. Nuclear Engineering and Design, 2015, 286:205-210.
[16]周琪,孙金华,王秋红,等.纯锆粉及包覆Fe3O4锆粉的燃烧特性[J].燃烧科学与技术, 2012, 18(6): 533-538.
ZHOU Q, SUN J H, WANG Q H, et al. Flame propagation characteristic of zirconium particle and zirconium particle coated with Fe3O4 [J]. Journal of Combustion Science and Technology, 2012, 18(6): 533-538.
[17]王秋红,孙金华,周琪,等.锆粉空气预混物多管喷射燃烧的火焰温度特征[J].燃烧科学与技术,2012,18(5):448-455.
WANG Q H, SUN J H, ZHOU Q, et al. Flame temperature characteristics of multi-tube injection combustion of zirconium-air cloud mixtures [J]. Journal of Combustion Science and Technology, 2012, 18(5): 448-455.
[18]WU H C, CHANG R C, HSIAO H C. Research of minimum ignition energy for nano titanium powder and nano iron powder [J]. Journal of Loss Prevention in the Process Industries, 2009, 22(1):21-24.
[19]王秋红,孙金华,邓军. 管道中锆粉云火焰传播的温度与速度特性[J]. 北京科技大学学报,2014,36(10):1378-1383.
WANG Q H, SUN J H, DENG J. Flame temperature and propagation speed characteristics of zirconium dust cloud flame propagation in pipelines [J]. Journal of University of Science and Technology Beijing, 2014, 36(10):1378-1383.
[20]王秋红. 锆粉云瞬态火焰及连续喷射火焰特性的实验研究[D]. 合肥:中国科学技术大学,2012.
WANG Q H. Experimental study on characteristics of transient flame and continuous jet flame of zirconium dust cloud [D]. Hefei: University of Science and Technology of China, 2012.
[21]中华人民共和国应急管理部.粉尘层最低着火温度测定方法:GB/T 16430—2018 [S]. 北京:中国标准出版社, 2018.
Ministry of Emergency Management of the Peoples Republic of China. Determination of the minimum ignition temperature of dust layer: GB/T 16430—2018 [S]. Beijing: Standards Press of China, 2018.

备注/Memo

备注/Memo:
收稿日期:2021-01-05
基金项目:乏燃料后处理专项(1181020307)
第一作者:毛立(1997-),男,硕士研究生,主要从事粉尘爆炸的研究。E-mail:18234183803@163.com
通信作者:唐双凌(1971-),男,副研究员,硕导,主要从事辐射防护与环境保护研究。E-mail:tshling@163.com
黄寅生(1962-),男,教授,博导,主要从事军事化学与烟火技术研究。E-mail:huangyinsheng@sina.com
更新日期/Last Update: 2021-10-04